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ABSTRACT 

 

Mesoporous silica nanoparticles (MSN) with high surface area, tunable pore size and 

very narrow pore size distribution were functionalized by organic acid, organic base, metallic 

nanoparticles and organometallic complexes through co-condensation methods and/or post-

synthesis grafting methods. And these surface-functionalized mesoporous materials were 

applied as heterogeneous catalysts in organocatalysis, metallic catalysis and organometallic 

catalysis. 

Organocatalysis. First, Brønsted acid and base were confined into the mesoporous 

channels of MSN and they could co-exist as compatible catalysts for one-pot reaction 

cascades without neutralizing each other because they were confined in different MSN 

particles’ channels. Brönsted acid and base also were site-separated by MSN’s internal 

surface and external surface through co-condensation method to functionalize MSN’s 

internal surface followed by grafting method to functionalize MSN’s external surface. These 

internal and external surface-separated Brönsted acid and base could co-exist as compatible 

catalysts too. 

Metallic catalysis. Water-soluble rhodium nanoparticles with well defined particle 

size were synthesized and immobilized on MSN during in situ MSN’s synthesis. The 

obtained material (MSNRhNPs) had homogeneous rhodium nanoparticle size, homogeneous 

rhodium nanoparticle distribution in MSN, typical MSN’s highly ordered structure and 

surface area and narrow pore size distribution as well. After MSNRhNPs were modified by 

manganese oxide, it could catalyze the hydrogenation of CO to produce the renewable energy 

alternative - ethanol with high selectivity and high activity. Additionally, after MSNRhNPs 

were functionalized by some chiral agents such as (-)-cinchonidine, it can used as a solid 

chiral catalyst which can be recycled and reused without any loss of reactivity and 

enantioselectivity. 

Organometallic catalysis. Wilkinson-type rhodium phosphine complex was 

homogeneously immobilized on MSN surface by co-condensation method. This MSN- 

immobilized rhodium-phosphine complex (RhPMSN) had a new and total different catalytic 
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performance: RhPMSN could enantioselectively catalyze the hydrogenation of pyruvate 

when (-)-cinchonidine was adsorbed on RhPMSN surface. However, RhCl(TPP)3 (TPP: 

triphenylphosphine) and (-)-cinchonidine could not enantioselectively catalyze the same 

reaction in homogeneous system.  

An in-depth solid-state NMR study of RhPMSN has been presented. 

Functionalization of the ligand was confirmed by the presence of T sites in the 29Si 

CPMASNMR spectrum and quantification of these sites was achieved via integration of the 
29Si DPMAS NMR spectrum. Both 1D and 2D SSNMR experiments showed that covalent 

attachment of the rhodium– phosphine ligand to the MSN surfaces was successful. Both 13C–
1H and 31P–1H idHETCOR experiments provided structural details of oxidized and non-

oxidized phosphine ligands, otherwise indiscernible in a conventional 1D CPMAS NMR 

experiments. 

Organometallic complex (salen)Cr on MSN was synthesized and applied in the 

oxidation of tetramethylbenzidine (TMB) with iodosobenzene. MSN-(salen)CrIII as a 

heterogeneous catalyst exhibited both similarities and differences with the analogous 

(salen)CrIII(H2O)+ as catalyst in aqueous acetonitrile (10% H2O). It was shown that the 

covalently attached catalyst in mesoporous channels of MSN was still easily accessible to the 

reactants without diffusion problem. 

Aminopropyl-functionalized MSN was synthesized and applied in the selective 

sequestration of carboxylic acids from biomass fermentation. Aminopropyl-functionalized 

MSN with a designed loading of functional groups could have a very high selectivity for 

carboxylic acid instead for ethanol, glucose, and protein. The regeneration of aminopropyl-

functionalized MSN could be done easily by increasing pH to 10.5 because the adsorption 

reaction between carboxylic acids and aminopropyl-functionalized MSN was pH-dependent. 

And the regenerated aminopropyl-functionalized MSN showed adsorption capacity 

equivalent to the original. 
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CHAPTER 1.  GENERAL INTRODUCTION OF FUNCTIONALIZATION 
OF MESOPOROUS SILICATE 

 

DISSERTATION ORGANIZATION 

 

This dissertation includes ten chapters: a general introduction (Chapter 1), followed 

by eight chapters for scientific results (Chapter 2 – 9) and general conclusions (Chapter 10).  

Chapter 1 describes the general introduction of mesoporous silicates, including the 

synthesis, mechanism, functionalization and applications in catalysis. 

Chapter 2 describes the confinements of Brönsted acid and base in the mesoporous 

channels of different mesoporous silica nanoparticles and their successful applications as 

compatible catalysts for one-pot reaction cascades. 

Chapter 3 extends the successful functionalization of individual mesoporous silica 

nanoparticle with both Brönsted acid and base by co-condensation methods followed by post-

synthesis grafting methods. As a result of this ideal site-isolation, reaction cascades requiring 

two or more catalysts which are incompatible in one solution system could be done by these 

new internal and external surface bifunctionalized one-particle. 

Chapter 4 shows the new MSN-supported manganese-modified rhodium nanoparticle 

catalyst (MSNRhNPsMN) could suppress the formation of by-product methanol efficiently 

therefore has very high selectivity to the ideal C2 oxygenates in CO hydrogenation. In 

MSNRhNPsMn, the well-defined rhodium nanoparticles were distributed homogeneously 

through the whole mesoporous silica and modified by promoters during the formation of 

mesoporous silica. 

Chapter 5 describes the immobilizations of both well defined rhodium nanoparticles 

and chiral reagent cinchonidine on mesoporous silica nanoparticle surface by co-

condensation method. In the enantioselective hydrogenation of ethyl pyruvate, reactivity and 

enantioselectivity could be retained very well during the catalyst recycling without any 

additional chiral reagent supplement. 
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Chapter 6 presents that the enantioselectivity of the hydrogenation of ethyl pyruvate 

catalyzed by the achiral RhPMSN (rhodium phosphine complex immobilized on MSN 

surface) material could be induced and tuned by introducing a surface-adsorbed chiral agent 

((-)-cinchonidine), although its counterpart, RhCl(TPP)3 and (-)-cinchonidine, could not 

enantioselectively catalyze the same reaction in homogeneous system. 

Chapter 7 describes an in-depth solid-state NMR study of RhPMSN. 

Functionalization of MSN by 2-(diphenylphosphino)ethyl groups was confirmed by the 

presence of T sites in the 29Si CPMAS NMR spectrum and quantification of these sites was 

achieved via integration of the 29Si DPMAS NMR spectrum. Both 1D and 2D SSNMR 

experiments showed that covalent attachment of the rhodium– phosphine ligand to the MSN 

surfaces was successful. Both 13C–1H and 31P–1H idHETCOR experiments provided 

structural details of oxidized and non-oxidized phosphine ligands, otherwise indiscernible in 

a conventional 1D CPMAS NMR experiments. It was found that oxidation of the attached 2-

(diphenylphosphino)ethyl groups and detachment of Rh was enhanced at higher temperature 

even under CO and H2. 

Chapter 8 describes the synthesis of MSN-supported organometallic complex 

(salen)CrIII and its application in the oxidation of tetramethylbenzidine (TMB) with 

iodosobenzene. And the reaction using MSN-(salen)CrIII as a heterogeneous catalyst 

exhibited both similarities and differences with the analogous homogeneous reaction using 

(salen)CrIII(H2O)+ as catalyst in aqueous acetonitrile (10% H2O).  

Chapter 9 shows that the aminopropyl-functionalized MSN could serve as an efficient 

adsorbent for selective sequestration of carboxylic acids. Aminopropyl-functionalized MSN 

with a designed loading of functional groups had a very high selectivity for carboxylic acid 

instead of ethanol, glucose, and protein. Because the adsorption reaction between carboxylic 

acids and aminopropyl-functionalized MSN was pH-dependent, the regeneration of 

aminopropyl-functionalized MSN could be done successfully by increasing pH to 10.5. It 

was demonstrated that the regenerated aminopropyl-functionalized MSN showed adsorption 

capacity equivalent to the original.  

Chapter 10 includes the summary of my research work and future directions of study. 
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LITERATURE REVIEW OF FUNCTIONALIZATION OF 
MESOPOROUS SILICATES 

 

Introduction 

Because of their high surface areas and large pore volumes, many porous materials 

are widely used as adsorbents, catalysts and catalyst supports. Depending on the predominant 

pore size, the International Union of Pure and Applied Chemistry (IUPAC) classified porous 

materials into the following three categories in 1985:1 

 

1) Microporous:  with pore diameter less than 2 nm; 

2) Mesoporous:   with pore diameter between 2 nm and 50 nm; 

3) Macroporous: with pore diameter larger than 50 nm. 

 

Well known members of the microporous materials are the zeolites2 which have the 

pore sizes in the range of 0.2-1.0 nm. They provide excellent catalytic properties by virtue of 

their crystalline aluminosilicate network. It’s also well-known from the beginning that their 

applications are limited by the relatively small pore sizes. Thus, mesoporous materials with 

larger pores and well-defined pore structure remain an active and attractive research area for 

many researchers in chemistry, materials and chemical engineering. 

However, before the early 1990s, there seemed to be a limitation for the artificially 

synthetic porous materials, including zeolites and sol-gel materials,2,3 which usually had a 

pore or channel diameter less than 2.0 nm with a wide pore size distribution because the 

individual quaternary directing agents with small alkyl chain length were used as templates 

(Figure 1-1).4 
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Discovery and Synthesis of Mesoporous Materials 

In the early 1990s the discovery of the MCM-41 and the M41S family of mesoporous 

materials using the cooperative assembly of surfactant with silicates,5-9 opened a new era to  

Figure 1-2. Surfactant-directed formation of mesoporous materials from inorganic, 

hybrid, or organic building blocks. 9,10 

Figure 1-1. The formation of microporous molecular sieves using individual small alkyl 

chain length quaternary directing agents (top) and the formation of mesoporous 

molecular sieves using long alkyl chain length quaternary directing agents (bottom).4 
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exceed the pore size limit of zeolites (Figure 1-1). This discovery sparked extensive research 

on surfactant-directed assembly, using surfactant to direct and assembly building blocks into 

mesoscopically ordered structures. More specially, noncovalent interactions between the 

surfactant and the building blocks drive the building blocks to organize around 

supramolecular surfactant structures first (Figure 1-2).9,10 Simultaneously or subsequently, 

chemical reactions, such as a condensation / co-condensation of inorganic clusters or 

electrochemical reduction, create covalent or metallic bonds among building blocks, resulting 

in mesostructured nanocomposites containing liquid-crystalline surfactant. The removal of 

the surfactant by calcination or solvent extraction creates a mesoporous material with a 

templated pore structure.  

 

The size, shape, and intermolecular interactions of the mesoporous material can be 

tuned to produce hexagonal (MCM-41, SBA-1511), cubic (MCM-48), lamellar (MCM-50), 

and other random arranged mesostructures (Figure 1-3).4 All of these mesoporous materials 

were characterized and show high surface area, large pore volume and narrow pore size 

distributions compared to microporous materials. When these mesoporous materials are used 

Figure 1-3. The X-ray diffraction patterns and proposed structures of MCM-41, 

MCM-48, and MCM-50.4 
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as catalyst supports, surface area and large pore volume are very important to catalyst 

activity and tunable narrow pore size distribution plays a key role in selectivity controlling. 

In the synthesis of the hexagonal MCM-41 and cubic MCM-48, usually a quarternary 

ammonium surfactant as an ionic template, such as cetyltrimethylammonium bromide 

(CTAB), was used as a template to make the pore size around 2 to 10 nm.6-9 Charge-

matching has been recognized as the most critical factor in governing the final phases and 

stability. Liquid-crystal templating (LCT) mechanism was proposed by Beck et al.6 to 

explain the formation mechanism of MCM-41 (Figure 1-4).  

 

Since then, many synthetic routes and strategies have been developed to yield a wide 

diversity of materials of various frameworks with different chemical compositions and pore 

structures.11-41 Stucky et al. introduced nonionic surfactants in acidic condition to produce 

thick-wall large pore size (4-6 nm in diameter) hexagonal mesoporous silicates SBA-

15.11,21,22 And SBA-15 usually has mesopores and micropores together evidenced by BET 

isotherm and TEM study.42 In general, almost every organic molecule can be used as a soft 

template to lead hard inorganic porous materials in solution state. One is able to freely alter 

the pore organization (hexagonal, cubic or lamellar) and a pore size as well. Disordered 

mesostructured siliceous or nonsiliceous materials were also synthesized by Pinnavaia et al. 

through a neutral amine templating.14   

Figure 1-4. Possible mechanistic pathways for the formation of MCM-41: (1) liquid 

crystal phase initiated and (2) silicate anion initiated.6  



www.manaraa.com

 7 

 

These mesoporous materials already sparkled an extensive study on their applications 

in catalysis,43-53 biology,38,54-60 drug delivery,61-74 remediation of toxic compounds75-80 and 

material synthesis by replication.35,36,81,82  

 

Functionalization of Mesoporous Silicates 

In many cases where mesoporous materials were involved, further functionalization 

of these materials on their surface was done usually in order to improve their chemical and 

physical properties. My thesis will focus on catalysis on mesoporous silicates, therefore 

functionalization of mesoporous silicates will be described here. 

As mentioned before, mesoporous silicates usually have very high surface and their 

surfaces are covered by silanol groups, which makes the functionalization of the pore surface 

of the mesoporous materials adjustable. Additionally, the surface functionalization of 

mesoporous silicates could change the chemical and physical properties of these materials 

dramatically. Therefore, the surface functionalization of mesoporous silicates has been 

intensively investigated.83 There are two major ways to functionalize the surface of 

mesoporous silicates by organic functional groups, named as post-synthesis grafting and co-

condensation. Each of these two functionalization methods has certain advantages, which 

will be described below. 

 

Grafting Methods 

Grafting is a post-synthesis method to modify a pre-fabricated inorganic mesoporous 

material surface by attachment of functional groups to the surface of material, usually after 

surfactant removal (Fig. 1-5).83  In the process of grafting mesoporous silicates, the surface 

silanol groups (Si-OH), which can be present in high concentration, act as convenient 

anchoring points for organic functionalization. 
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Surface functionalization with organic groups by grafting is most commonly carried 

out by silylation, which is accomplished by one of the three procedures (Eq. (1) to (3)).84 

Silylation occurs on free (≡Si-OH) and geminal silanol (=Si(OH)2) groups, but hydrogen-

bonded silanol groups are less accessible to modification because they form hydrophilic 

networks among themselves.85 The original structure of the mesoporous support is generally 

maintained after grafting. 

Figure 1-5. Functionalization of mesoporous silicates by grafting.83 
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As we know, mesoporous silicates have two ‘different’ surfaces, the internal surface 

in the mesopores and the external surface. In the grafting which was mentioned before, the 

external surface is more accessible and is functionalized predominantly over the internal 

mesopore surface.86 The functional groups on the external surface are also more accessible in 

subsequent reactions, leading to reduced selectivities in processes that benefit from pore 

confinement. To minimize involvement of the external surface in reaction processes and to 

optimize selectivity, it is possible to passivate these surfaces first, before functionalizing the 

internal silanol groups. Controlled dual functionalization has been achieved by two different 

site-selective grafting methods (Fig. 1-6). 

Johnson et al.87 assumed that silanol groups on the external surface of a calcined 

MCM-41 sample are kinetically more accessible for functionalization. Calcined MCM-41 

was modified first with Ph2SiCl2 to passivate the external surface and then with 

(MeO)3SiCH2CH2CH2NH2 as an anchor for a redox-active ruthenium cluster catalyst. This 

cluster acted as a stain in high-resolution transmission electron microscopy (HRTEM) by 

which the authors concluded that the amine tethers were present almost entirely on the 

internal surface of MCM-41. De Juan and Ruiz-Hitzky88 employed an alternate approach for 

selective functionalization of external and internal MCM-41 surfaces. The first (external) 

grafting step was carried out with the as-synthesized mesoporous sieve whose pores were 

still filled with the surfactant template. Exposure of this support to a solution of trimethylsilyl 

chloride resulted in functionalization mainly of the external surface due to steric restrictions 

in the surfactant-filled mesochannels. The template was then extracted and the internal pore 

surfaces were functionalized with phenylpropyldimethylchlorosilane. 

 

Co-condensation Methods 

Co-condensation method is another strategy to functionalize mesoporous silicates’ 

surface by sol-gel chemistry between tetraalkoxysilane and one or more organoalkoxy-

silanes with Si-C bonds (Figure S1-7). 
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Figure 1-6. Methods of selective grafting on external and internal surfaces of   

mesoporous silicates.83 

Figure 1-7. Co-condensation between tetraalkoxysilane and organoalkoxysilanes 

with Si-C bonds to synthesize hybrid inorganic-organic mesoporous silicates.83 
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Compared with the post-grafting method in which the distribution of functional 

groups often tends to be inhomogeneous, the co-condensation is able to give homogeneously 

distributed organic groups on the entire inner pore surfaces and no pore-blockage or 

shrinkage problems have been reported. Even though bulky organoalkoxysilane precursors 

often perturb the original textural properties of the systems, some new methods already 

developed to decorate the surface wall efficiently while maintaining the mesoporous 

structure.89-91  Another advantage of co-condensation over post-synthesis grafting is to 

control the particle morphology of final mesoporous silicate very easily,30,92 which is closely 

related to the biomineralization process in nature, for example the complex forms of 

diatoms.16,93 

 

Comparison between Grafting and Co-condensation Methods 

Lim and Stein86 compared the relative distribution of surface groups in vinyl-

functionalized MCM-41 samples prepared by either a post-synthesis grafting process or a 

direct co-condensation synthesis. Based on powder X-ray diffraction (XRD), X-ray 

photoelectron spectroscopy (XPS), and bromination kinetics data, the vinyl groups appeared 

to be non-uniformly distributed in samples prepared by the grafting process, with a large 

proportion of vinyl groups on the external surface of the crystallites or inside channels but 

near the channel openings. In products from a direct co-condensation reaction, the vinyl 

groups appeared to be more uniformly distributed throughout the channels.  

Each of the two functionalization methods has certain advantages. If uniform surface 

coverage with organic groups is desired in a single step synthesis, the direct method may be 

the first choice. It also provides better control over the amount of organic groups 

incorporated in the structure.  

 

Applications of Functionalized Mesoporous Silicates in Catalysis83 

Because of their high surface area and large pore size, mesostructured materials are 

frequently used as support for immobilizing precious metal catalysts.94-100  
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During the last two decades, hybrid mesoporous solids have been considered for a 

wide range of heterogeneous catalysis reactions.43-50,58,59,101-115 Immobilization of active 

centers can improve the overall efficiency of the catalytic processes because: 1) it is easier to 

retain the solid catalyst in the reactor or to separate it from the liquid process stream by 

filtration (compared to extraction or distillation requirements for homogeneous processes); 2) 

often the catalyst can be regenerated and recycled; 3) confinement of the catalyst within 

mesopores provides a means of introducing size and/or shape selectivity and thus greater 

specificity for a reaction. In contrast to organic polymers, mesoporous silicates used in 

organic solvents do not swell or dissolve. If functional groups are covalently attached to the 

surface, leaching is minimized.  

It has been noted that mesoporous catalysts differ significantly in many respects from 

their post-functionalized, amorphous silica counterparts.116-118 In several investigations, 

confinement of the catalyst in the mesoporous solid improved the activity compared to 

attachment to amorphous or non-porous silica, either due to enhanced selectivity in a 

sterically homogeneous environment or due to higher catalyst turnover brought about by 

stabilization of the catalyst within the channels. Other advantages exist: for example, 

mesoporous silicates with highly acidic surface groups are relatively safe to handle, since 

most of the acidic groups are confined within the channels. 

In this dissertation, by integrating the advantages of mesoporous silica nanoparticles, 

the advantages of co-condensation methods, the advantages of post-synthesis grafting 

methods and the advantages of heterogeneous catalysis, several mesoporous silica 

nanoparticle(MSN)-based catalytic systems will be designed and applied in organocatalysis, 

metallic catalysis and organomeallic catalysis as well.43,44,49,102 
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Abstract 

Mesoporous silica nanoparticles (MSNs) containing base (primary amine) and 

sulfonic acid inside the MCM-41 type porous channels were used as compatible catalysts for 

one-pot reaction cascades successfully. 

 

Introduction 

Nature’s strategy of employing multistep reaction cascades for the synthesis of 

complex and bioactive organic molecules in living systems has long been a goal for 

designing artificial catalysts.  While recent advancements in supramolecular chemistry, 

nanomaterial synthesis, and catalyst design have significantly improved our ability in 

mimicking this ingenious strategy of biocatalysis, the progress in constructing compatible 

multifunctional catalytic system that can operate synergistically in one-pot sequential 
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reactions is still relatively limited.  Nonetheless, the recently developed “site isolation” 

concept for synthesizing surface-supported catalysts with multiple functionalities has led to 

many efficient biomimetic catalysts.  In these systems, the different and often incompatible 

catalytic functionalities, such as acidic and basic groups, are separatively isolated within the 

supporting matrices.  The spatial separation of these chemical species that react avidly with 

each other in solution prevents the undesired self destruction of catalytic capability.  A few 

recent literature reports have highlighted the success of this approach. For example, Cohen 

and co-workers first developed a “wolf and lamb” two-stage reaction system, where a soluble 

reagent reacts first with one polymeric reagent and the product with the second polymeric 

reagent.1 Blum and Avnir further developed “wolf and lamb” type one-pot reactions by 

encapsulating opposing catalysts in sol-gel.2-6 More recent investigations on using soluble 

star polymers7 and other polymers8 as site-isolating matrices also led to effective catalytic 

systems for one-pot reaction cascades.  

Ever since the discovery of MCM-41 mesoporous silica,9 these structurally ordered 

materials have been regarded as the ideal solid support for various catalysts due to their high 

surface areas (> 800 m2/g) and tunable pore sizes (2-20 nm). Several recent reports on the 

multifunctionalization of mesoporous silica materials have rendered several interesting 

systems for cooperative catalysis.10-13  Given that Blum and Avnir have pioneerly 

demonstrated that sol-gel silica can serve as an effective matrix for entraping opposing 

catalysts for one-pot reaction cascades,2-6 we are interested in taking advantage of the unique 

properties, i.e., homogeneous mesoporous structure and tunable particle size and pore 

diameter, of the MCM-type of mesoporous silicas for the site isolation of opposing catalytic 

reagents as well as the pore size discrimination that can regulate the mass-transport 
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properties of a given reaction. By “hiding” one kind of functional groups inside the 

mesopores of a mesoporous silica particle, while ensuring the other opposing reagent is 

situated inside another mesoporous silica material with different particle and pore sizes, the 

reaction kinetics could foreseeably be further manipulated. To achieve this goal, a key 

prerequisite is to functionalize the interior mesoporous surface with homogeneously 

distributed, high concentrations of functional groups, along with precise morphology control.  

We have recently developed an interfacial designed co-condensation method under low 

surfactant concentration condition for the synthesis of a series of organically functionalized 

mesoporous silica nanoparticle (MSN) materials.13-18  Herein, we report on the synthesis and 

characterization of two MCM-41 type MSN materials that are functionalized with a 4-

ethylphenylsulfonic acid (SAMSN) and an aminopropyl-functionality (APMSN) as depicted 

in Figure 1-1.  We demonstrated that SAMSN and APMSN could serve as acid and base 

catalysts, respectively, for the wolf-and-lamb type of one-pot reaction cascades.  As a proof 

of principle, we examined the catalytic conversion of 4-nitrobenzaldehyde dimethyl acetal 

(Compound A) to (E)-1-nitro-4-(2-nitrovinyl)benzene (Compound C), which involved two 

separate reactions, i.e., an acid-catalyzed deprotection to yield the 4-nitrobenzaldehyde 

denoted as Compound B, followed by a base-catalyzed Henry reaction in nitromethane to 

generate the final product (E)-1-nitro-4-(2-nitrovinyl)benzene (Table 1-1).  

 

Results and Discussions 

The SAMSN and APMSN materials were synthesized via the previously described 

co-condensation of tetraethyl orthosilicate (TEOS) and 4-chlorosulfonophneylethylene-
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trimethoxysilane (CSTMOS) (or 3-aminopropyl-trimethoxysilane (APTMOS)) in the 

presence of cetyltrimethylammonium bromide (CTAB) as template under basic conditions as 

detailed in the Supporting Information. The CTAB-removed SAMSN and APMSN materials 

were characterized with nitrogen sorption analysis, powder X-ray diffraction (XRD), 

scanning electron microscopy (SEM), transimission electron microscopy (TEM), and the 13C 

and 29Si solid-state NMR. The TEM (Figure 1a and b) and SEM (Figure S1 of the Supporting 

Information) images of SAMSN and APMSN showed that both materials have the typical 

MCM-41 type, highly ordered parallel channel-like porous structure packed in a hexagonal 

symmetry.  The XRD diffraction patterns (Figure S3) further confirmed the MCM-41 type 

mesoporous structure with the d100 = 42.5 Å and 40.9 Å (SAMSN and APMSN, 

respectively). As illustrated in Figure S4, the N2 surface sorption analysis showed very high 

total surface areas (SAMSN: 827.9 m2/g; APMSN: 789.0 m2/g) and narrow pore diameter 

distributions (SAMSN: 25.4 Å; APMSN: 22.3 Å).  

The 29Si solid-state crossed polarization magic angle spining (CP-MAS) NMR 

(Figure S5 and S6) of these materials confirmed the covalent linkage between the organic 

functional groups to the silica surfaces as indicated by the T2 and T3 peaks, which are derived 

from (≡SiO)2Si(OH)R and (≡SiO)3SiR, respectively.19-21  Furthermore, the presence and 

chemical structures of the desired organic acid and base functionalities were quantatively 

verified by the 13C solid-state CP-MAS NMR spectra (Figure 1-2). The loading of sulfonic 

acid was determined to be 0.32 mmol/g of SAMSN, whereas the loading of amine was 0.40 

mmol/g of APMSN. 

In order to test the compatibility of these mesopore-confined acid and base solids in 

catalyzing the one-pot reaction cascade, different molar ratios of SAMSN/APMSN were 
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applied to the chemical transformation of 4-nitrobenzaldehyde dimethyl acetal(Compound A) 

to (E)-1-nitro-4-(2-nitrovinyl)benzene (Compound C). Reactions without any catalysts, with 

either free acid or free base, and with non-functionalized MSN were also performed as 

control experiments (Table 1-1). 

As shown in entries 1–4 in Table 1-1,  the acid-catalyzed deprotection of A, which is 

the first step of this two-step cascade reaction, was completed within 24 h in the presence of 

SAMSN (1.0 mol%) and APMSN (1.0–6.0 mol%).  The result suggested that the sulfonic 

acid functionality of SAMSN was not affected by the presence of APMSN.  Interestingly, the 

conversion of B to the final product C of the second Henry reaction was significantly 

enhanced from 43.5 to 97.7 % as the amount of base-catalyst (APMSN) increased from 1.0 to 

6.0 mol%.  Also, different amounts of compound B (56.4–2.3 %) were isolated at the end of 

24 h in these reactions (entries 1–4) of various quantities of APMSN. Apparently, the more 

APMSN introduced to the reaction mixture, the faster kinetics could be achieved in the 

Henry reaction. 

Furthermore, the desired Henry adduct C did not form in entries 5–6, where only one 

of the two MSN catalysts was present in the reaction.  In entries 7 and 8, a molecular base 

(tert-butylamine) and an acid (para-toluenesulfonic acid) that are structurally similar to the 

corresponding organic groups immobilized in APMSN and SAMSN, respectively, were used 

to replace the solid catalysts.  As predicted, these molecular substitutes could freely diffuse 

into the mesopores of APMSN (or SAMSN) and reacted to the surface-anchored acidic/basic 

functional groups.  The deactivated solids no longer could catalyze the reaction cascade.  

This homogeneous acid-base neutralization-induced destruction was confirmed by mixing 

both tert-butylamine and para-toluenesulfonic in the reaction solution (entry 9).  
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Conclusions 

We have demonstrated that by confining organic acid and base inside of mesoporous 

silica nanoparticles, these opposing reagents can be isolated and serve as effective catalysts 

for a one-pot reaction cascade that requires incompatible catalysts. We envision that this 

approach can be further developed into a general design principle for mimicking biological 

systems, in which a series of reactions are catalyzed by different enzymes in a precise 

sequence. 
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Figure 1-1.  Mesoporous silica nanoparticles functionalized with an 

ethylphenylsulfonic acid (SAMSN) and an aminopropyl group (APMSN). The 

transmission electron micrographs (TEM) of SAMSN (a) and APMSN (b). Scale bar 

= 50 nm. 
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Figure 1-2. 13C CP-MAS spectra of SAMSN (above) and APMSN (bottom). 
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Table 1-1. One-pot reaction cascade catalyzed by SAMSN and APMSN. 

 

Entry SAMSN (mol %) APMSN (mol %) Conversion 

of A (%) 

Yield of B 

(%) 

Yield of C 

(%) 

1 1.0 1.0 99.9 56.4 43.5 

2 1.0 2.0 100 22.0 78.0 

3 1.0 4.0 100 5.0 95.0 

4 1.0 6.0 100 2.3 97.7 

5 1.0 0 98.1 98.1 0 

6 0 1.0 0 0 0 

7 1.0 1.0 

(tert-butylamine) 

0 0 0 

8 1.0 (para-

toluenesulfonic acid) 

1.0 0 0 0 

9 1.0 (para-

toluenesulfonic acid) 

1.0 

 (tert-butylamine) 

0 0 0 

10 Pure MSN Pure MSN 0 0 0 
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Supporting Information 
 

1. Synthesis of mesoporous silica nanosphere (MSN) containing organic acid confined inside 

pores (SAMSN) and MSN containing organic base confined inside pores (APMSN) 

SAMSN and APMSN were synthesized via the co-condensation reaction from our 

group.1 – 3 A typical procedure is as following: A mixture of cetyltrimethylammonium 

bromide (CTAB, 5.49 mmol), 2.0 mol / L of aqueous NaOH (7 mL,  14 mmol) and water 

(480 mL, 26.67 mol) was heated at 80 oC for 30 min. Into this clear solution, 

tetraethylorthosilicate (TEOS, 10 mL, 51.40 mmol) and 1.0 mmol of 2-(4-

chlorosulfonylphenyl)ethyltrimethoxysilane for SAMSN (or 3-aminopropyltrimethoxysilane 

for APMSN) were added rapidly and sequentially via injection with vigorous stirring. Within 

few minutes, the white solid precipitate was observed. After 2 hours, the as-synthesized 

material was separated by hot filtration, washed with copious amount of methanol, dried 

under vacuum overnight. The surfactant (CTAB) was removed b y acid extraction at 60 oC 

with vigorous stirring by placing 1.0 gram of as-made solid in 100 mL methanol including 

1.0 mL concentrated hydrochloride acid for 6 hours. The resulted surfactant-removed solid 

SAMSN (or APMSN) was collected by hot filtration, washed with copious amount of water 

and methanol, dried at 90 oC under vacuum overnight. 
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2. Characterization of MSB-acid and APMSN 

                                            

 
 

 

 

 

 

 

 

 

 

Figure S1-2. Powder XRD data of SAMSN and APMSN. 
 

Figure S1-1. Scanning electron microscopy (SEM) of SAMSN (a) and APMSN (b).
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( b ) APMSN 

Figure S1-3. BET isotherms and BJH pore diameter distribution curves of SAMSN and 

APMSN. 
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Figure S1-4. 29Si solid state NMR spectrum of SAMSN (T2: -59 ppm; T3: -68 ppm; 

Q2: -90 ppm; Q3: -100 ppm; Q4: -110 ppm). 
 

 

 

 

 

Figure S1-5. 29Si solid state NMR spectrum of APMSN (T2: -59 ppm; T3: -68 ppm; 

Q2: -90 ppm; Q3: -100 ppm; Q4: -110 ppm). 
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Table S1-1. Structural data of SAMSN and APMSN.a 

Samples d100 (Å) SBET (m2/g) Vp (cm3/g) DBJH (Å) 

SAMSN 42.5 827.9 0.67 25.4 

APMSN 40.9 789.0 0.74 22.3 

[a] The BET surface area (SBET), the mesopore volume (Vp), and the mean mesopore diameter (DBJH) 

were obtained from the nitrogen absorption / desorption data in Figure S3. The d100 data represent the d-spacing 

corresponding to the (100) peaks in XRD (Figure S2).  

 

3. One-pot reaction cascades 

4-nitrobenzaldehyde dimethyl acetal (0.75 mmol) and water (0.75 mmol) were mixed 

with SAMSN (or free acid, and the acid quantity is decided by the reaction conditions) and 

APMSN (or free base, and the base quantity is decided by the reaction conditions) at room 

temperature under N2 and sealed in a glass vessel. The as-made slurry was heated to 80 oC 

with vigorous stirring. After 24 hours, the reaction was stopped by cooling to room 

temperature. The product was analyzed by GC-MS with capillary column (HP-5, 30 m x 

0.319 mm x 0.25 μm).  

 

(1) Huh, S.; Wiench, J.W.; Yoo, J.C.; Pruski, M.; Lin, V.S.Y. Chem. Mater. 2003, 15, 4247–

4256. 

(2) Huh, S.; Wiench, J.W.; Trewyn, B.G.; Song, S.; Pruski, M.; Lin, V.S.Y. Chem. Commun. 

2003, 2364-2365. 

(3) Radu, D.R.; Lai, C.Y.; Huang, J.; Xu, S.; Lin, V.S.Y. Chem. Commun. 2005, 1265–1266. 

 

(

)

(

b)
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Abstract 

Brønsted acid and base were site-separated on the different surfaces of mesoporous 

silica nanoparticle through cocondensation to functionalize the internal surface and post-

synthesis grafting to functionalize the external surface. As a result of this ideal site-isolation, 

reaction cascades requiring two or more catalysts which are incompatible in one solution 

system could be done by these new internal and external surface-bifunctionalized particle. 

 

Introduction 

Mesoporous silica have been regarded as ideal supports for heterogeneous catalysts 

due to their high surface area, tunable pore size since the discovery of ordered mesoporous 

material MCM-41,1 which opened a wide range of possibilities for the chemical design of 

novel heterogeneous catalysts.2 Based on the rapid development of immobilized organo-

catalysis, one of the major research interests about mesoporous silica in catalysis is surface 

functionalization with organic functional groups, which are potential immobilized organo-

catalysts, by either post-synthesis grafting or co-condensation.3-27 Wherein, the design and 

synthesis of bi- or multi-functionalized mesoporous silica containing multiple types of active 

centers has attracted a lot of attention, because these functional groups might be used as 

catalysts in several steps in a reaction sequence with a cooperative or independent catalytic 
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performance.3,7,9-14,16,28 Actually, in biological system, there are many interesting examples of 

multifunctional catalysts -- enzymes, such as α-amylases,29 as they can catalyze different 

reactions using different or incompatible catalytic active sites.  

There are many examples of bifunctional mesoporous material catalysts in which 

attention has been focused on combinations of different organic functional groups, such as 

amines with silanols,16,30 amine with thiols,31,32 amines with ureas,3,7 sulfonic acid with 

thiols,9,11,14 and adjacent sulfonic acid functional groups,28 where all of these two 

incorporated organic groups are compatible with each other. Recently different and 

incompatible catalytic centers (Brönsted acid and base) on separated and different 

mesoporous silica nanoparticles have been investigated.33 As a matter of fact, many enzymes 

can immobilize mutually incompatible catalytic groups, including Brönsted acid and base, on 

one molecule, but all catalytic groups maintain their independent abilities to catalyze 

multistep reactions sequentially with full functionalities because they are well site-separated 

by 3-D folding of the enzyme. Up to now, there are only few examples of mesoporous 

materials with two functional groups which cannot coexist in solution. For example, Davis 

and his coworkers10 reported sulfonic acid and amine functionalized SBA-15 with limited 

amount of acid and base groups to neutralize each other during the one-pot synthesis of 

material; Mehdi and his coworkers23 reported another bifunctionalized mesoporous silica 

material with sulfonic acid  groups in its framework and basic groups in its channel pores, 

but sulfonic acid  groups in its framework were not so accessible for reactants. However, 

there is no report on selective dual-functionalization of single mesoporous silica nanoparticle 

with Brönsted acid and base on mesoporous silica external surface and internal surface 

separately, presumably due to the incompatibility of these groups and the difficulty to control 

reactions on external surface and internal surface individually.34-42 

Here we report two mesoporous silica nanoparticles (MSNs) that were functionalized 

by both Brönsted acid and base, in which one of Brönsted acid and base was tethered on 

MSN external surface by post-synthesis grafting and the other was located on MSN internal 

surface through co-condensation independently. These functional groups on one MSN 

particle can catalyze multistep reactions sequentially, such as sulfonic acid-catalyzed 

hydrolysis of 4-nitrobenzaldehyde dimethyl acetal and the following amine-catalyzed Henry 
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reaction of 4-nitrobenaldehyde with nitromethane, which cannot be achieved with these same 

groups in one-pot homogeneous solution system. These novel materials were synthesized by 

co-condensation of tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane 

(APTMOS) (or 3-mecaptotrimethoxysilane (STMOS)) in the presence of 

cetyltrimethylammonium bromide (CTAB) as template under basic medium, which was 

followed by post-treatment to grafting another functional group onto its external surface. 

Results and Discussions 

Typically, these bifunctional mesoporous materials were synthesized by co-

condensation of one of the two functional groups in its internal channel4 followed by grafting 

another on its external surface with template in its mesoporous channels41,42. In the synthesis 

procedure of bifunctional mesoporous silica nanoparticles with sulfonic acid on internal 

surface and amine groups on external surface, 2.0 g of CTAB and 7.0 mL of aqueous sodium 

hydroxide (2.0 mol/L) was dissolved into 480 mL of water at 80 oC with stirring (pH = 11.8); 

10.0 mL of TEOS (44.0 mmol) and 190.6 µL (1.0 mmol) of STMOS were injected into the 

solution with vigorous stirring; After 2 h stirring, solid was separated by hot filtration, 

washed with excess water, dried at 120 oC under vacuum overnight; the as-made solid with 

CTAB inside mesoporous channels was stirred with 180.0 µL (1.0 mmol) of APTMOS in 

toluene at 120 oC for 6 h before being filtrated and washed with excess solvent and dried at 

120 oC under vacuum overnight; In order to convert thiol groups to sulfonic acids, the as-

gotten solid was stirred in acetic acid (10.0 mL) with 30 % H2O2 (20.0 mL) at 100 oC for 6 h; 

The surfactant was removed by extraction with methanol for 24 h and then washed with 

excess water and heated at 150 oC overnight in order to recover the amino groups.43 The 

obtained white powder was termed as SAMSN-AP (Figure 3-1). Another bifunctional 

mesoporous silica nanoparticle with amine groups on its internal surface and sulfonic acid 

groups on its external surface, termed as APMSN-SA, was synthesized by the similar method 

(Figure S3-1). 

The N2 adsorption-desorption measurements for SAMSN-AP and APMSN-SA 

showed type IV isotherms with very clear H1-hysteresis loops at relative high pressure, 

characteristic of mesoporous materials with BET surface areas over 853 m2/g for SAMSN-
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AP, 934 m2/g for APMSN-SA, total pore volumes of 0.8 cm3/g for SAMSN-AP, 0.9 cm3/g 

for APMSN-SA, and very narrow pore size distribution centered at 2.8 nm for SAMSN-AP, 

2.6 nm for APMSN-SA (Figure S3-2, S3-3 and Table S3-1). Small-angle X-ray scattering 

patterns of SAMSN-AP and APMSN-SA indicated highly ordered structures with 

corresponding d100 as 4.1 nm and 4.2 nm respectively (Figure S3-4 and Table S3-1). TEM 

images in Figure S3-6 confirmed their mesoporous structures with parallel channels as well 

as uniform pore size. 

These materials were also analyzed by 29Si and 13C solid-state NMR spectroscopies. 

T2 and T3 peaks in 29Si NMR spectra (Figure 3-2 and S3-7) indicated the incorporation of 

sulfonic acid and amine groups. 13C NMR spectra (Figure 3-3 and S3-8) indicated the 

presence of the intact organic functional groups and the removal of most of surfactant. And 

the elemental analysis of both SAMSN-AP and APMSN-SA showed they have 0.35 mmol/g 

of sulfur and 0.35 mmol/g of nitrogen, which means the concentration of sulfonic acid is 

equal to that of amine on MSN with S/N ratio around 1.0. 

Activities of these immobilized bifunctional catalysts were tested in a reaction 

cascade which was the hydrolysis of acetal followed by Henry reaction in one-pot reaction 

system, in which the first step in the cascade could only be catalyzed by acid and the second 

step in the cascade could merely be catalyzed by base catalyst (Scheme 3-1).  

In all experiments, the amount of amine and/or sulfonic acid functional groups was 

kept at 4.0 mol %. As shown in Table 3-1, after the two step reaction cascade, the conversion 

of starting material is 100 %. In the final product, more than 97% was C when the 

bifunctionalized MSN (SAMSN-AP and APMSN-SA) was used as catalyst (Table 3-1, entry 

1 and 2), which matched the result in entry 3 where amine and sulfonic acid were trapped in 

two different mesoporous silica nanoparticles, SAMSN and APMSN, individually. However, 

neither SAMSN nor APMSN could show any conversion of the reactant A to the final 

product C (Table 3-1, entry 4 and 5) although SAMSN could catalyze the first step of this 

two-step cascade. Interestingly, no conversion of the starting materials into final product was 

observed when either of the homogeneous analogues of the sulfonic acid and amine was used 

with the bifunctionalized MSN (SAMSN-AP or APMSN-SA) (Table 3-1, entry 6 -9), 
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apparently because these functionalities neutralize each other. The pure support MSN alone, 

as an experimental control, caused no conversion (Table 3-1, entry 10). 

These bifunctionalized MSNs (SAMSN-AP and APMSN-SA) can be recycled easily 

by filtration after reactions without any detectable catalytic activity decrease up to several 

times (Table S3-2), which further confirmed that these two functional groups were quite 

stable and well site-separated on MSN. 

Whilst the one-pot reaction cascades including hydrolysis and Henry reactions was 

studied to establish proof of our site-separation of Brönsted acid and base on one mesoporous 

silica nanoparticle,  in order to compare with our earlier results,33 kinetics of these acid and 

base catalysts were investigated and shown in Figure 3-4. Turnover frequency of both acid 

and base decreased along the reaction time due to the decreased reactant concentration.  

Although silanol groups on the external surface of MCM-41 were more kineticly accessible 

than that on the internal surface,37,44,45 both acid and base on MSN’s internal surface show 

higher reactivity or turnover frequency (TOF) than their counterparts which were on the 

external surface of MSN.  

These kinetic results indicate that 1) there is no diffusion limitation in our MSN-

based catalysts and 2) reactivity of acid and base might be related to the dispersion or surface 

coverage of catalytic sites. In order to investigate the relationship between reactivity and 

catalyst surface coverage or dispersion, a series of Henry reactions catalyzed by five 

aminopropyl functionalized MSNs (APMSN) with different amine concentration on their 

surfaces (Figure S3-9, S3-10 and S3-11) were investigated (Scheme 3-2) and results were 

shown in Figure 3-5. From the fitted curve of catalytic activities (TOF) vs the concentration 

of base on the surface (mmol amine per square meters surface), catalytic activity (TOF) did 

decrease dramatically when the surface coverage of catalyst was increased, which was 

consistent with the results when we changed the reaction time (from Figure S3-12 to S3-15). 

Conclusions 

Combining cocondensation to functionalize MSN internal surface and post-synthesis 

grafting to functionalize its external surface, we have shown that site-separation of Brönsted 

acid and base on one mesoporous silica nanoparticle was successful. As a result of this ideal 
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site-isolation, reaction cascades requiring two or more catalysts which are incompatible in 

free-moving states could be done by our new bifunctionalized one-particle, which can be a 

good model for biological systems in which  a series of reactions catalyzed by only one 

multifunctional enzyme. At the same time, we also demonstrated that the activity of catalyst 

on the surface mesoporous silica nanoparticle was closely related to the coverage of catalyst 

on MSN surface, therefore we have a better understanding about the catalysis on MSN 

surface and can envision a better adjustment on the kinetics and efficiency of catalyst by 

changing the quantity of catalytic sites on a unit surface area. 
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Figure 3-1. Synthesis of mesoporous silica nanoparticles which were 

bifunctionalized by sulfonic acid groups on internal surface and organic amine 

groups on external surface independently. 

Figure 3-2. 29Si solid-sate NMR spectra of SAMSN-AP (T2: -59 ppm; T3: -68 ppm; Q2: -

90 ppm; Q3: -100 ppm; Q4: -110 ppm). 
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Figure 3-3. 13C solid-sate NMR spectra of SAMSN-AP. (Chemical shift at 29.5 ppm 

was from CTAB; Chemical shift at 26.0 ppm was from starting material 3-

mecaptopropyl group.) 

Figure 3-4. Turnover frequency of acid and base catalysts on either internal or external 

surface of SAMSN-AP and APMSN-SA. 
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Figure 3- 5. Fitted curve of base activity vs base concentration on MSN surface (Reaction 

conditions were the same as that in Table 3-1).  
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Table 3-1. One-pot reaction cascades composed of acid-catalyzed hydrolysis and base-

catalyzed Henry reaction 

Entry Catalyst B (%) C (%) Conv. of A(%) 

1 SAMSN-AP 2.3 97.7 100 

2 APMSN-SA 1.9 98.1 100 

3 SAMSN/APMSN 4.5 95.5 100 

4 SAMSN 100 0 100 

5 APMSN 0 0 0 

6 SAMSN-AP/AP 0 0 0 

7 SAMSN-AP/PTSA 100 0 100 

8 APMSN-SA/AP 0 0 0 

9 APMSN-SA/PTSA 100 0 100 

10 MSN 0 0 0 
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Scheme 3-2. Henry reaction catalyzed by APMSN. 

Scheme 3-1. One-pot reaction cascade involving sequential acid-catalyzed acetal 

hydrolysis followed by the amine-catalyzed Henry reaction. 
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Supporting Information 

 

1. Synthesis of bifunctional mesoporous materials with sulfonic acid on its external 

surface and amine groups on its internal surface (APMSN-SA)  

In order to locate one of the final two functional groups homogeneously on the 

internal surface of mesoporous silica, first co-condensation method from our group was 

used.1-5 2.0 g of cetyltrimethylammonium bromide (CTAB) and 7.0 mL of sodium hydroxide 

aqueous solution(2.0 mol/L) was dissolved into 480 mL of deionized water at 80 oC with 

vigorous stirring (pH = 11.8); 10.0 mL of tetraethyl orthosilicate (TEOS) (44.0 mmol) and 

180.0 µL (1.0 mmol) of 3-aminopropyltrimethoxysilane (APTMOS) were injected into the 

solution with vigorous stirring; After 2 h stirring, the white solid was separated by hot 

filtration, washed with excess water, dried at 120 oC under vacuum  

Figure S3-1. Synthesis of mesoporous silica nanoparticles which were 

bifunctionalized by organic amine groups on external surface and sulfonic acid 

groups on internal surface independently. 
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overnight. In order to selectively functionalize mesoporous silica external surface,6,7 the as-

made solid with template CTAB inside mesoporous channels was stirred with 190.6 µL (1.0 

mmol) of 3-mecaptotrimethoxysilane (STMOS) in toluene at 120 oC for 6 h before being 

filtrated and washed with excess solvent and dried at 120 oC under vacuum overnight; In 

order to convert thiol groups to sulfonic acids, the as-gotten solid was stirred in acetic acid 

(10.0 mL) with 30 % H2O2 (20.0 mL) at 100 oC for 6 h; The surfactant was removed by 

extraction with methanol for 24 h and then washed with excess water and heated at 150 oC 

overnight in order to recover the amino groups.8 The obtained white powder was termed 

APMSN-SA. 

The highly ordered mesoporous structures of these two bifunctional mesoporous 

materials were characterized by nitrogen sorption isotherms (Figure S3-1 and S3-2), powder 

X-ray diffraction (XRD) (Figure S3-3), scanning electron microscopy (SEM) (Figure S3-4), 

and transmission electron microscopy (TEM) (Figure S3-5). Structural data of SAMSN-AP 

and APMSN-SA were summarized in Table S1. 29Si solid-state NMR in Figure S3-6 gave us 

T3 and T2 sites as well as Q4, Q3 and Q2 sites for both SAMSN-AP and APMSN-SA, which 

indicated that both SAMSN-AP and APMSN-SA were organic functionalized mesoporous 

silica. 13C solid-state NMR (Figure S3-7) confirmed the intact chemical structures of sulfonic 

acid and amine on these two materials. 

 

2. One-pot reaction cascades catalyzed by APMSN-SA or SAMSN-AP 

Nitromethane (1.0 mL), 4-nitrobenzaldehyde dimethyl acetal (0.75 mmol) and water 

(0.75 mmol) were mixed with SAMSN-AP or APMSN-SA (100 mg) at room temperature 

under N2 and sealed in a glass vessel. The as-made slurry was heated to 80 oC with vigorous 

stirring. After 48 hours, the reaction was stopped by cooling to room temperature with ice-

water bath. The product was analyzed by a GC (Varian 3900) with capillary column (HP-5, 

30 m x 0.319 mm x 0.25 μm). 

For catalysts recycling, catalysts were separated by filtration after reaction, washed 

with excess tetrahydrofuran and dried at 120 oC under high vacuum overnight before being 

used for another test. Results for catalyst recycling were listed in Table S3-2. 
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Figure S3-3. BET isotherms and BJH pore size distribution curve of APMSN-SA.
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Figure S3-4. XRD of SAMSN-AP(left) and APMSN-SA(right). 
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Table S3-1. Structural data of SAMSN-AP and APMSN-SA.a 

Samples d100 (Å) SBET (m2/g) Vp (cm3/g) DBJH (Å) 

SAMSN-AP 41 853 0.8 29 

APMSN-SA 42 934 0.9 26 

[a] The BET surface area (SBET), the mesopore volume (Vp), and the mean mesopore 

diameter (DBJH) were obtained from the nitrogen absorption / desorption data in Figure S3-

1 and S3-2. The d100 data represent the d-spacing corresponding to the (100) peaks in XRD 

(Figure S3-3).  

 

 

  

 

 

 

(a) (b) 

Figure S3-5. SEM images of SAMSN-AP(a) and APMSN-SA(b). 



www.manaraa.com

 54 

 

 

  

(a)                                                                             (b) 

Figure S3-6. TEM images of SAMSN-AP(a) and APMSN-SA(b). 

Figure S3-7. 29Si solid-sate NMR spectra of and APMSN-SA (T2: -59 ppm; T3: -68 

ppm; Q2: -90 ppm; Q3: -100 ppm; Q4: -110 ppm). 
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3. Synthesis of aminopropyl-functionalized mesoporous silica with homogeneously 

distributed amine groups on its surface 

In order to distribute the amine functional groups homogeneously on the surface of 

mesoporous silica nanoparticles, co-condensation method from our group was used.1-5 

Typically, 2.0 g of cetyltrimethylammonium bromide (CTAB) and 7.0 mL of sodium 

hydroxide aqueous solution(2.0 mol/L) was dissolved into 480 mL of deionized water at 80 
oC with vigorous stirring (pH = 11.8); 10.0 mL of tetraethyl orthosilicate (TEOS) (44.0 

mmol) and different quantity of 3-aminopropyltrimethoxysilane (APTMOS) were injected 

into the solution with vigorous stirring; After stirring for 2 h, the white solid was separated 

by hot filtration, washed with excess water, dried at 120 oC under vacuum overnight. The 

surfactant was removed by extraction with methanol for 24 h and then washed with excess 

water and heated at 150 oC overnight in order to recover the amino groups. 

 

Figure S3-8. 13C solid-sate NMR spectra of APMSN-SA. (Chemical shift at 29.5 ppm 

was from CTAB; Chemical shift at 26.0 ppm was from starting material 3-mecaptopropyl 

group.)  
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Table S3-2. One-pot reaction cascades composed of acid-catalyzed hydrolysis and base-

catalyzed Henry reaction 

 

Recycle Catalyst B (%) C (%) Conv. (%) 

0 SAMSN-AP 2.3 97.7 100 

1 SAMSN-AP 2.0 98.0 100 

2 SAMSN-AP 2.8 97.2 100 

3 SAMSN-AP 3.0 97.0 100 

4 SAMSN-AP 4.0 96.0 100 

5 SAMSN-AP 3.2 96.8 100 

0 APMSN-SA 1.9 98.1 100 

1 APMSN-SA 4.3 95.7 100 

2 APMSN-SA 2.5 97.5 100 

3 APMSN-SA 3.0 97.0 100 

4 APMSN-SA 3.3 96.7 100 

5 APMSN-SA 2.8 97.2 100 
Reaction conditions: [A]0 = 7.5 M in CH3NO2 (1.0 mL) with 1.0 equivalent H2O was stirred at 80 oC in a sealed vials for 48 

h. Conversion and yields were based on the GC data. AP: 1-aminopropane, PTSA: p-toluenesulfonic acid. 

 

These materials were analyzed by N2 adsorption-desorption measurements (Figure S3-9) 

and they all show type IV isotherms with very clear H1-hysteresis loops at relative high 

pressure and narrow pore size distributions, characteristic of mesoporous materials and 

Small-angle X-ray scattering patterns of these materials (Figure S3-10) indicated highly 

ordered structures. T2 and T3 peaks in 29Si solid NMR (Figure S3-11) show that there were 

organic functional groups on these five materials and the concentration of organic groups on 

these five materials were different. Elemental analysis was used to determine the accurate 

concentration of amino group on the surface. 
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Figure S3-9. BET isotherms and BJH pore size distribution curves of APMSNs with 

different aminopropyl group loading. 
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Figure S3-10. XRD of APMSNs with different aminopropyl group loading. 

 
Figure S3-11. 29Si solid NMR of APMSNs with different aminopropyl group loading. 
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4. Henry reactions catalyzed by APMSN 

4-nitrobenzaldehyde (1.0 mmol) was mixed with APMSN (100 mg) in 1.0 mL 

nitromethane at room temperature under N2 and sealed in a glass vessel. The as-made slurry 

was heated to 80 oC with vigorous stirring. After the designed reaction time, the reaction was 

stopped by cooling to room temperature with ice-water bath. The product was analyzed by 

GC-MS with capillary column (HP-5, 30 m x 0.319 mm x 0.25 μm). 

Turnover frequency (TOF, 1/h) of catalyst was determined by mole of product per 

mole of catalyst per hour. Catalyst concentration here (mmol/m2) was calculated by the 

loading of catalyst (mmol/g) of material divided by the surface area of the materials (m2/g). 

The relationship between TOF and catalyst concentration were shown in Fig. S12. The TOF 

of catalyst always decreased with the increased catalyst concentration. The fitted curves of 

TOF vs catalyst surface coverage, shown in Figure S13, S14 and S15, indicated TOF could 

decrease dramatically when we increased the catalyst coverage on MSN surface, which 

indicates the decrease of catalyst efficiency. In order to design a MSN-based catalyst with a 

better catalytic performance, the catalyst surface coverage must be considered as an 

important parameter.  
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Figure S3-12. Turnover frequency vs the concentration of aminopropyl group of APMSN. 
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Figure S3-13. Fitted curve of base activity (12 h) vs base concentration on MSN surface. 

 

 

 

 
Figure S3-14. Fitted curve of base activity (24 h) vs base concentration on MSN surface. 
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Figure S3-15. Fitted curve of base activity (36 h) vs base concentration on MSN surface. 
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ABSTRACT 
Well-defined and monodispersed rhodium (Rh) nanoparticles as small as ~2 nm were 

synthesized with polyvinylpyrrolidone (PVP) polymer in ethanol. And the as-made PVP-

stabilized Rh nanoparticles were dispersed and encapsulated in mesoporous silica 

nanoparticles in situ during the synthesis of this high-surface-area mesoporous silica 

nanoparticle (MSN) support. Catalytic performance of the MSN-supported Rh nanoparticles 

(MSNRhNPs) was modified by manganese oxides and studied with CO hydrogenation.  

MSNRhNPs were active for the CO hydrogenation and the selectivity to C2 oxygenates 

reached the highest point without formation of by-product methanol after the Rh 

nanoparticles were modified by manganese oxide during the formation of MSN. 

 

Introduction 

It is well known that higher alcohols synthesized from natural gas, coal, or biomass 

can be used as a renewable energy alternative, such as additives to gasoline and an easily 

transportable source of hydrogen.1-4 Because ethanol could not only decrease the dependence 
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on imported cruel oil but also would have a positive environmental impact, synthesis of 

ethanol selectively from syngas (CO and H2), which can be made from coal or biomass 

pyrolysis, has been a topic of growing interesting from both industrial and academic points of 

views. In the catalytic synthesis of ethanol since the 1980s,5 rhodium-based catalysts have 

been known for decades to be the most selective catalysts for the synthesis of C2+ 

oxygenates, including ethanol, acetaldehyde and acetic acid, due to the unique CO adsorption 

behavior on Rh surface,6,7   although some other transition metal catalysts were reported.2,8-15 

Most of the attention on Rh-based catalysts for ethanol synthesis from syngas was and is still 

on the influences of catalyst precursors,16-21 supports6,22-28 and promoters or 

additives16,21,22,24,29-43 on the activity and selectivity. And most of these Rh-based 

heterogeneous catalysts were made from impregnation of rhodium salt solution which then 

was followed by calcinations of the as-made solid at high temperature and reduction of 

rhodium oxides to metallic rhodium particles by hydrogen gas.44-46 Usually rhodium particles 

from this process, including impregnation, calcination and reduction, have a very broad size 

distribution and vary a lot from batch to batch, because the control of particle size 

distribution especially on support surface is still very challenging especially at the required 

high temperature.13 And that might be the reason there are only few studies on the size 

controlling of Rh particles in CO hydrogenation.47 But, for CO hydrogenation or any other 

reactions catalyzed by immobilized Rh catalysts, Rh particle size controlling should be a very 

important to adjust the percentage of surface metal atoms that are the only accessible to the 

reactants.48,49 Therefore downsizing Rh particles, especially to nanometer scale, should be an 

efficient strategy to increase the reactivity and probably improve the selectivity, due to the 

dramatically increased percentage of surface metal atoms. 

For downsizing metal catalyst particle, colloidal chemistry could be adopted to 

synthesize mono-dispersed metal nanoparticle with well-defined particle size in solution. 

After metal nanoparticle was made in colloidal solution, nanoparticle’s dispersion on porous 

supports by impregnation is required. Mesoporous silica structures have been regarded as 

ideal catalyst supports due to their high surface area, tunable pore size and highly ordered 

alignment since its discovery at the beginning of 1990s.27,50-52 However, in this method, in 

addition to the difficulty of controlling the homogeneous distribution of metal particles on 
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porous supports surface, rhodium particle growing is still challenging for both chemists and 

chemical engineer, due to 1) the weak interaction (or physical adsorption) between metal 

nanoparticle and support surface and 2) the inevitable growth or sintering of catalyst 

particles.  

Here we reported the successful synthesis of ~2.0 nm Rh particles (RhNPs) in 

alcoholic solution using a polymer, polyvinylpyrrolidone (PVP), as a nanoparticle stabilizer 

and subsequent encapsulate the as-made RhNPs in the framework of mesoporous silica 

nanoparticle (MSN) during in situ of the forming of MSN (Scheme 4-1). Comparing with 

commonly used MSN-supported Rh catalyst from incipient wetness impregnation of aqueous 

RhCl3 solution (MSNRh), RhNPs encapsulated in MSN framework (MSNRhNPs) not only 

have a higher reactivity in CO hydrogenation but have also better selectivity to the desired 

product ethanol. The reactivity of MSNRhNPs in CO hydrogenation and especially the 

selectivity to ethanol were further improved after it was modified by manganese oxide. 

 

Results and Discussions 

Synthesis of PVP-stabilized Rh Nanoparticles and Mesoporous Silica 

Nanoparticle Framework Encapsulated Rh Nanoparticles. Metal nanoparticles less than 

10 nm that were well-defined and monodispersed with controlled shape have been 

synthesized by colloid chemistry in recent years.53-55 For the synthesis of Rh nanoparticles 

less than 2.0 nm, there are a few reported methods.48,49,56,57 Because PVP is a water soluble 

polymer, PVP stabilized rhodium nanoparticles can be dispersed homogeneously in water 

which can be homogeneously distributed in aqueous solution for MSN synthesis. PVP-

stabilized RhNPs were synthesized as reported with minor modifications.48,49  PVP (Typical 

Mw = 29,000) was purchased from Sigma-Aldrich as the nanoparticle stabilizer. A 7.9 

mmol/L PVP solution was prepared by dissolving the polymer into anhydrate ethanol.  The 

PVP ethanolic solution was mixed with 7.1 mmol/L aqueous RhCl3 (Rh, 38-40% from Strem 

Chemicals, Inc.) solution at room temperature, where the mole ratio between PVP and Rh3+ 

was 10.0. After reduction of rhodium in ethanol, solvent was evaporated by rotavap at 40 oC 

and the as-made Rh nanoparticles (RhNPs) were characterized by transmission electronic 
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miscroscopy (TEM). TEM image (Figure 4-1a) shows that the Rh particles are well-defined 

and mono-dispersed spheres with ~2.0 nm in diameter and HRTEM image (Figure 4-1b) 

combining with diffraction pattern indicates that these tiny RhNPs have the crystalline 

structures.  

The as-made RhNPs (480.0 mg, including 40.0 mg Rh) were re-dissolved into water 

(10.0 mL, 0.6 mol) and mixed with water (470 mL, 26.1 mol), cetyltrimethylammonium 

bromide (CTAB, 2.0 g, 5.5 mmol), NaOH (7.0 mL x 2.0 mol/L, 14.0 mmol) at room 

temperature prior to the hydrolysis of tetraethoxyl orthosilicate (TEOS, 10.0 mL, 44.8 mmol) 

at 80 oC for 2.0 hours. After the hydrolysis, the grey solid was filtrated and dried under 

vacuum overnight. The catalytic material MSNRhNPs was made and ready for catalyst 

characterization, analysis and catalytic tests after the removal of template CTAB and PVP at 

350 oC in air for 5 hours. Before reaction, MSNRhNPs was reduced in continuous H2 flow 

(10 mL/min) at 310 oC with 450 psi pressure for at least 2 h. N2 adsorption and desorption 

isotherms (Figure S4-1) show that MSNRhNPs still had a typical mesoporous structure of 

MSN with a narrow pore size distribution as diameter was around 2.4 nm, surface area at 947 

m2/g and pore volume at 1.0 mL. X-ray powder diffraction (XRD, Figure S4-2) indicated that 

MSNRhNPs were still full of highly ordered parallel channels, which could be seen clearly 

from Transmission Electron Microscopy (TEM) images (Figure 4-2a). In TEM image, a lot 

of tiny black spots could be seen in addition to the highly ordered parallel channels and these 

were RhNPs, which was further confirmed by Scanning Transmission Electron Microscopy 

(STEM) image in Figure 4-2b. From STEM images of MSNRhNPs, it is clear that 1) RhNPs 

were well-distributed over the mesoporous silica nanoparticle and 2) the supported RhNPs 

was almost the same size, around 2.0 nm in diameter, as unsupported RhNPs (as shown in 

Figure 4-1), although it is very difficult to accurately measure the size of small nanoparticles 

on mesoporous supports because TEM images taken from nanoparticles supported on 

mesoporous supports often suffer from low contrast due to the decrease of the supporting 

material’s electron transparency, and this behavior is magnified as particle size decreases, 

and nanoparticles on mesoporous silica are also in different focal planes during TEM 

imaging. Energy Dispersive X-ray (EDX) was used to determine the loading of Rh on 
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MSNRhNPs and 1.6 wt% of Rh in this material was obtained basing on the atomic ratio 

between Si and Rh (Figure S4-4). 

Synthesis of Rh-MSN and Mnn+ Modified Rh Catalysts through Impregnation 

Methods. MSNRhNPs’ counterparts, Rh-MSN with 1.6 wt% of Rh loading, from traditional 

incipient wet-chemistry, impregnation methods, were synthesized (see supporting 

information) in order to compare their catalytic properties in CO hydrogenation reactions. 

For Rh catalysts in CO hydrogenation, many promoters were used to improve selectivity to 

C2 (including ethanol and acetaldehyde) or C2+ oxygenates,2-4 and among these reported 

promoters, MnxOy was a very good candidate.34-36,58,59 (Here, the oxidation states of Mn 

species usually could not be accurate and it will be addressed in the flowing studies in this 

paper.) Therefore, in order to improve the selectivities of MSNRhNPs and Rh-MSN to C2 

oxygnates, Mnn+ modified MSNRhNPs (MSNRhNPs-Mn) and Mnn+ modified Rh-MSN (Rh-

Mn-MSN) were both synthesized by impregnation methods using Mn(NO3)2 (see supporting 

information). 

Modification of RhNPs by Mnn+ during in situ formation of MSN. 

It’s a well-known challenge to control the distribution of metal ions on solid surface. 

Therefore, many catalysts, even with the same chemical composition, have different catalytic 

performances if they are from different companies or different research groups. For the 

bimetallic or multimetallic catalysts, the situation was even worse due to the difficulty to 

adjust the interaction between these different metals. In catalyst MSNRhNPs, RhNPs were 

distributed homogeneously in MSN particles as we can see from Figure 4-3. However, 

during the Mnn+ modification procedure, the distribution of Mnn+ and the interaction between 

RhNPs and Mnn+ are still out of control due to the innate disadvantage of impregnation 

method. In order to achieve a homogeneous distribution of Mnn+ around RhNPs and the 

interaction between RhNPs and Mnn+, we, for the first time, modify RhNPs by Mnn+ right 

during the formation of MSN as shown in Scheme 4-2. 

Typically, the as-made RhNPs (480.0 mg, including 40.0 mg Rh) were re-dissolved 

into water (10.0 mL, 0.6 mol) and mixed with water (470 mL, 26.1 mol), CTAB (2.0 g, 5.5 

mmol), NaOH (7.0 mL x 2.0 mol/L, 14.0 mmol) at room temperature prior to the adding of 

Mn(NO3)2 • xH2O (104.7mg, including 20.0 mg Mn) and the hydrolysis of TEOS (10.0 mL, 
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44.8 mmol) at 80 oC for 2.0 hours. After the hydrolysis of TEOS, the black solid was filtrated 

and dried under vacuum overnight. The catalytic material MSNRhNPsMn was made and 

ready for the catalyst characterization after the calcination at 350 oC in air for 5 hours. Before 

reaction, MSNRhNPsMn was also reduced in continuous H2 flow as other catalysts. N2 

adsorption and desorption isotherms (Figure S4-12), XRD (Figure S4-13) show that 

MSNRhNPsMn still has the typical highly ordered MSN parallel channel structure with high 

surface area (SBET = 878 m2/g), very narrow pore size distribution (dBJH = 2.5 nm). TEM and 

STEM images (Figure 4-3) of MSNRhNPsMn show that RhNPs are distributed 

homogeneously through the whole structure of MSN and the particle size is still around 2.0 

nm without change after modification with Mnn+. EDX was used to determine the loading of 

Rh and Mn on MSNRhNPsMn and 1.6 wt% of Rh and 0.8 wt% of Mn in this material were 

found, which makes the ratio between Rh and Mn around 2.0. 

X-ray Photoelectron Spectroscopy (XPS) Study. XPS was used to characterize the 

oxidation states of Rh and Mn in our catalysts on a Perkin-Elmer PHI 5500 XPS 

spectrometer with a position-sensitive detector, a hemispherical energy analyzer in an ion-

pumped chamber (evacuated to 2 x 10-9 Torr), and a Al Kα (BE = 1486.6 eV) X-ray source at 

300 W with 15 kV acceleration voltage. For all of our experiments, the binding energy of 

silicon was forced to be 104.5 eV which was used as an internal standard for other elements’ 

binding energy. Figure 4-4 shows the XPS results of RhNPs and MSNRhNPs. Before 

calcination (Figure 4-4a and 4-4b), the Rh 3d5/2 peak (~308 eV) could be fit by two peaks 

with bonding energies of 307.3 eV and 308.9 eV, corresponding to the metallic Rh (0) and 

the oxidized Rh (+3) respectively. As shown in Figure 4-4a, RhNPs was very stable in air at 

room temperature with 88 % of metallic Rh(0) and 12 % of oxidized Rh(+3). After being 

encapsulated in MSN, there is still 30 % of metallic Rh(0) as shown in Figure 4-4b. After 

calcinations in air at 350 oC for 5 h, from XPS spectroscopy, Si, Mn, Rh and O are the only 

four detectable elements in all of our catalysts reported here, which indicates that template 

CTAB and PVP were removed completely from MSNRhNPs surface. With calcination, Rh 

was oxidized almost completely to Rh2O3 (Figure 4-4c) which can be reduced back to 

metallic Rh(0) by H2 easily during the reaction(Figure 4-4d). So the XPS data might indicate 

that all of Rh atoms in RhNPs could be accessible to at least O2 and H2 and might be 



www.manaraa.com

 68 

 

accessible to CO as well under our reaction conditions. In any XPS spectroscopy of Mnn+ 

modified catalysts, Mnn+ was found. However, the oxidation states of Mn species could not 

be solved because of its lower intensity and the relatively small difference between binding 

energies of Mn2+, Mn3+ and Mn4+ (Figure S4-15), which decreases the reliability of fitting 

theoretically. Therefore, it is better to use Mnn+ instead of other Mn species with defined 

oxidation states here. 

Carbon Monoxide Hydrogenation Catalyzed by Rh Catalysts. Here a laboratory 

scale flow and tubular reactor (Figure S4-16) was used for the CO hydrogenation with low 

surface area SiC as catalyst diluting reagent. Temperature was controlled by a Parr controller 

(4843) and two type-K thermocouples. Gas flows (CO and H2 were all from Praxair and 

UHP) were regulated by two calibrated mass flow system (Parr mass flow system with 

Brooks mass flow controllers). Before syngas was charged to the reactor, catalyst was 

reduced with 10 mL/min H2 flow at 450 psi and 632 K for two hours. Deionized water was 

charged into the condenser in order to dissolve most of alcohols from the reaction. Tail gas 

right after the tubular reactor from the reaction was analyzed on an on-line GC (Varian 3900 

with CP-Molsieve 5A (10 m x 0.32 mm x 10 µm) and CP-PoraBOND Q (50 m x 0.53 mm x 

10 µm)), and a thermal conductivity detector (TCD)) with 5 wt% Ar as an internal reference 

gas.  Liquid samples were analyzed on another Varian 3900GC but with flame ionization 

detector (FID) and a CP-PoraBOND Q (50 m x 0.32 mm x 5 µm) column. 

We found that MSN encapsulated RhNPs catalysts (MSNRhNPs) has higher activity 

(CO conversion) and better selectivity to C2 oxygenates than that of Rh-MSN made from 

impregnation methods in CO hydrogenation (Entry 1 and 2 in Table 4-1).  And these trends 

were kept very well at different reaction temperatures (Figure S4-17). Since catalytic activity 

comparison was based on assuming 100% dispersion for every catalyst, the difference of 

reactivity was most likely due to the difference between Rh particles sizes. After reaction at 

573 K for 24 h, TEM images showed that the Rh particles on Rh-MSN (Figure 4-5a) from 

impregnation methods grew much faster and had a much broader particle distribution (Most 

of them were larger than 5.0 nm and some of them even were around 20 nm in diameter) 

compared to that of MSNRhNPs (Figure 4-5b) where most of RhNPs were still less than 5 

nm in diameter. The larger Rh particle in Rh-MSN made CO and H2 accessible surface Rh 
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atoms less than that in MSNRhNPs with smaller particle size.   The higher selectivity to C2 

oxygenates of MSNRhNPs might be related to both Rh particle size and the special 

interaction between MSN matrix and RhNPs, which is still under investigated in our lab.  

After being modified with promoter Mnn+, as shown in Figure S4-18, MSNRhNPs-

Mn had the highest selectivity (32.4 %) to ethanol and lowest selectivity (3.7 %) to methanol. 

And both MSNRhNPs-Mn and Rh-Mn-MSN have higher catalytic activities after being 

modified with Mnn+ than that of their unmodified counterparts MSNRhNPs and Rh-MSN 

respectively (Entry 3 and 4 in Table 4-1). That indicates that manganese oxides not only can 

improve the selectivity of Rh catalysts to C2 oxygenates but also can accelerate the CO 

hydrogenation.  In another words, Mnn+ not only help to tilt the adsorbed CO from Rh to Mn 

which is helpful to synthesize ethanol and acetaldehyde according to Bao et. al.,58 but also 

participate the hydrogenation of CO to HCO which was thought to be the rate limiting step in 

CO hydrogenation to ethanol according to the density functional theory.60 Although the 

mechanism of Mn effects on CO hydrogenation is still under investigation, it is clear that the 

close interaction between Rh and Mn is necessary for a better catalytic performance of Rh 

catalyst in CO hydrogenation, which was further proved by our catalytic tests over 

MSNRhNPsMn. 

As listed in Table 4-1 (Entry 4 and 5), the catalytic activity of MSNRhNPsMn was 

almost the same as that of MSNRhNPs-Mn, which is because the same RhNPs were used as 

the catalytic sites in both cases. Although the selectivities to gas product methane were close 

to each other for MSNRhNPsMn and MSNRhNPs-Mn, interestingly, the selectivity of 

MSNRhNPsMn to ethanol is much higher than that of MSNRhNPs-Mn as shown in Figure 4-

6. Methanol, which usually is one of the main liquid by-products in CO hydrogenation, was 

kept at very low level through our tests when MSNRhNPsMn was used as catalyst. In the 

mean time, CO2 production is under GC’s detection limitation even at 593 K for 

MSNRhNPsMn as well. These results indicate that the closer or stronger interaction between 

promoter Mn and catalytic site Rh is necessary to synthesize the ideal product C2 oxygenates 

such as ethanol and suppress the formation of by-product methanol. As shown in Figure 4-6, 

the selectivity of ethanol in tested temperature range from 523 K to 573 K reached its highest 



www.manaraa.com

 70 

 

point and the selectivity of methane touched its lowest point although the CO conversion is 

only around 9.8 % which is lower than 24.2 % at 543 K. 

Conclusions 

In summary, we have designed a new Rh-based catalyst in which well-defined 

rhodium nanoparticles were distributed homogeneously through the whole mesoporous silica 

particle and could be easily modified by promoters during in situ of the formation of 

mesoporous silica. The resulting catalyst possesses a high surface area and narrow pore size 

distribution as normal MSN does. The new manganese modified rhodium catalyst could 

suppress the formation of by-product methanol efficiently therefore has very high selectivity 

to the ideal C2 oxygenates in CO hydrogenation. With the demonstrated better 

thermostability and better catalytic performance of MSN-encapsulated and Mn-modified 

rhodium nanoparticles, we defined a novel synthesis and modification method for metallic 

heterogeneous catalysts. 
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 Scheme 4-1. Synthesis of PVP-stabilized Rhodium Nanoparticles and the 

Subsequent Encapsulation of the RhodiumNanoparticle in the Framework of 

Mesoporous Silica Nanoparticles. 

 

Scheme 4-2. Synthesis of MSNRhNPsMn by co-condensation of Mn(NO)2, 

RhNPs with TEOS.  
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(a)                                                                (b) 

Figure 4-2. TEM image (a) and STEM image (b) of MSNRhNPs. 

(a) (b) 
 

Figure 4-1. TEM image (a) and HRTEM image (b) of RhNPs. 
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          (a)                                                                  (b) 

Figure 4-3. TEM (a) of STEM (b) images of MSNRhNPsMn. 
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Figure 4-4. XPS of RhNPs (a) and MSNRhNPs (b: before calcination, c: after calcination, d: 

after reaction.  

 

 

 

 

 

 

 

 

 



www.manaraa.com

 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5. TEM images of Rh-MSN (a) and MSNRhNPs (b) both after 
reaction at 300 oC for 24h.
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Figure 4-6. Effect of temperature on CO hydrogenation catalyzed by 

MSNRhNPsMn. 



www.manaraa.com

 79 

 

 

Table 4-1. Catalytic data of Rh-based catalysts in CO hydrogenation* 
Selectivity (%)   CO conversion 

(%) CH4 CO2 CH3OH C2 C2+ 

1 Rh-MSN 2.7 40.8 0 24.4 33.0 34.8 

2 MSNRhNPs 4.8 27.2 0 17.8 53.0 55.0 

3 Rh-Mn-MSN 13.7 63.0 1.6 3.8 24.3 31.6 

4 MSNRhNPs-Mn 20.2 47.0 2.5 3.7 42.2 46.8 

5 MSNRhNPsMn 24.2 51.2 0 0 40.3 48.8 

* All data were collected at the same conditions (0.3 g of catalyst with 3.0 g SiC, 300 oC, 450 psi, 11 

mL/min of CO, 22 mL/min of H2). 
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Supporting Information 

 

1. Characterization of Catalysts MSNRhNPs 
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Figure S4-1. BET isotherms and BJH pore size distribution curve of MSNRhNPs.
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Figure S4-2. XRD of MSNRhNPs. 
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Figure S4-3. SEM image of MSNRhNPs. 

Figure S4-4. EDX spectroscopy of MSNRhNPs. 
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2. Synthesis of catalyst Rh-MSN with 1.6 wt % Rh by impregnation 

RhCl3 • H2O (42.5 mg, including ~16 mg Rh) was dissolved into 2.0 mL H2O at room 

temperature and then mixed with 1.0 g pure MSN with vigorous stirring for 24 hours. The 

solid was collected by filtration and dried in an oven at 100 oC overnight. Then the catalyst 

was calcinated at 350 oC in air for 5 hours. Before reaction, the catalyst was reduced in 

continuous H2 flow (10 mL/min) at 310 oC with 450 psi pressure for at least 2 h and MSN-Rh 

was made. N2 adsorption and desorption isotherms (Figure S4-5) show that MSNRhNPs still 

had a typical mesoporous structure of MSN with a narrow pore size distribution as diameter 

was around 2.4 nm, surface area at 855 m2/g and pore volume at 0.8 mL. X-ray powder 
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Figure S4-5. BET isotherms and BJH pore size distribution curve of MSN-Rh.
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Figure S4-6. XRD of catalyst MSN-Rh. 



www.manaraa.com

 83 

 

diffraction (XRD, Figure S4-6) indicated that MSN-Rh were still full of highly ordered 

parallel channels, which could be seen clearly from Transmission Electron Microscopy 

(TEM) images (Figure S4-7). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Synthesis of MSNRhNPs-Mn and Rh-Mn-MSN 

Mn(NO3)2 • 6H2O ( 83.7 mg, including ~16 mg Mn) was dissolved into 2.0 mL H2O 

at room temperature and then mixed with 1.0 g Rh-MSN (or MSNRhNPs) with vigorous 

stirring for 24 hours. The solid was collected by filtration and dried in an oven at 100 oC 

overnight. Then the catalyst was calcinated at 350 oC in air for 5 hours. Before reaction, the 

catalyst was reduced in continuous H2 flow (10 mL/min) at 310 oC with 450 psi pressure for 

at least 2 h and MSN-Rh-Mn (or MSNRhNPs-Mn) was made. N2 adsorption and desorption 

isotherms (Figure S4-8 or S4-9) show that MSN-Rh-Mn (or MSNRhNPs-Mn) still had the 

same mesoporous structure of MSN-Rh (or MSNRhNPs) with a narrow pore size distribution 

as diameter was around 2.4 nm (or 2.5 nm), surface area at 765 m2/g (or 890 m2/g) and pore 

volume at 0.8 mL (or 0.7 mL). XRD (Figure S4-10 and S4-11) indicated that MSN-Rh-Mn 

Figure S4-7. TEM images of MSN-Rh. 
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and MSNRhNPs-Mn were still full of highly ordered parallel channels, which could be seen 

clearly from TEM images (Figure S4-12 and S4-13). 
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Figure S4-8. BET isotherms and BJH pore size distribution curve of MSN-Rh-Mn.

Figure S4-9. BET isotherms and BJH pore size distribution curve of MSNRhNPs-Mn.
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Figure S4-10. XRD of MSN-Rh-Mn. 
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Figure S4-11. XRD of MSNRhNPs-Mn. 
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4. Characterization of Catalysts MSNRhNPsMn 
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Figure S4-12. BET isotherms and BJH pore size distribution curve of 

MSNRhNPsMn. 
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Figure S4-13. XRD of MSNRhNPsMn. 
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Figure S4-14. SEM image of MSNRhNPsMn. 
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Figure S4-15. Manganese XPS spectra of MSNRhNPs-Mn (or MSNRhNPsMn) 

(Mn3O4: 640.9 eV, MnO: 641 eV, Mn2O3: 641 eV, MnO2: 641.6 eV). 
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5. CO hydrogenation over Rh-based catalysts 

Figure S4-16. Scheme of the fixed-bed reactor system. 
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Figure S4-17. Effect of temperature on CO hydrogenation catalyzed by MSN-Rh 

and MSNRhNPs. 
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ABSTRACT 
By co-condensation method, well defined rhodium nanoparticles and chiral reagent 

cinchonidine were immobilized and stabilized on mesoporous silica nanoparticle surface. In 

the enantioselective hydrogenation of ethyl pyruvate, reactivity and enantioselectivity could 

be retained very well during the catalyst recycling without any additional chiral reagent 

supplement. 

 

Introduction 

Due to the well-known potential advantages of heterogeneous catalysis, such as easy 

separation, efficient recycling, minimization of metal traces in the product, an improved 

handling and process control, overall low costs,1,2 enormous progress has been resulted 

recently in interdisciplinary studies on stereoselective heterogeneous catalysis. Among 

asymmetric heterogeneous catalysts, some heterogenized homogeneous complexes3-5 and 

chirally modified metals4,6,7 seem most promising. And chirally modified nickel8, platinum9-

11, palladium12, rhodium13-17 have emerged as effective heterogeneous asymmetrical catalysts 

for enantioselective hydrogenation of some specific substrates. Up to now, several methods 
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have been developed to immobilize metal particles on porous inorganic supports.18,19 The 

best, also simplest method is incipient wetness and ion exchange, in which the porous oxide 

support is impregnated with metal precursors in solution phase, followed by thermal 

treatment and/or reduction with hydrogen to form metal nanoparticles.20-23 However the size 

and size-distribution of metal nanoparticles formed on the support typically lack uniformity 

in size and shape, and the degree of dispersion on the support also usually could not be well 

controlled.  In comparison, the more controllable formation of transition metal 

nanoparticles14,15,24-28 for enantioselective heterogeneous catalysis has been achieved by wet-

chemistry approach during the past decade. 

Traditionally, these metal nanoparticles could be deposited on the surface of porous 

supports through mechanical mixing followed by evaporation. The immobilized metal 

nanoparticles could be used as asymmetrically heterogeneous catalysts after being modified 

by some chiral agents (usually cinchona alkaloids) through physical adsorption. As a result, 

the metal nanoparticles are not homogeneously dispersed on the support surface and the 

physically-adsorbed chiral modifiers will be washed away when the product was separated 

from the reaction system, which causes the loss of both reactivity and enantioselectivity. In 

order to improve the performance of heterogeneous metal nanoparticle, either different 

immobilization methods for metal nanoparticles on different supports15,24-26,29 or various 

chiral modifiers30-36 have been developed. However, enantioselectively heterogeneous 

catalysis, both having the homogenous distribution of metal nanoparticles and stabilized 

chiral modifiers on the catalyst surface, is still challenging. Herein, for the first time, we 

report a new strategy for enantioselective heterogeneous catalysis that can stabilize the well 

defined metal nanoparticle catalyst in mesoporous silica nanoparticle (MSN) framework 

during in situ MSN’s growth and simultaneously immobilize its chiral modifier through 

cocondensation methods37-42 followed by a post-synthesis coupling (Figure 5-1). 

Furthermore, we can decrease the amount of chiral modifier for enantioselective reactions. 

Results and Discussions 

We synthesized rhodium nanoparticles (RhNPs), which were well defined with an 

approximate diameter of 2.0 nm (Figure S5-1), as the real catalytic sites for our designed 
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reactions. Because these rhodium nanoparticles are protected by water-soluble polymer, 

polyvinylpyrrolidone (PVP), these metal nanoparticles can be partially encapsulated in 

mesoporous silica nanoparticles’ framework and homogeneously distributed in mesoporous 

silica supports during in situ the synthesis of mesoporous silica materials. At the same time, 

thiol group as a linker for the following reaction was covalently bonded on mesoporous silica 

surface during in situ the formation of mesoporous silica through cocondensation of 3-

mercaptopropyltrimethoxysilane (STMOS) and tetraethyl orthosilicate (TEOS). After the 

removal of template cetyltrimethylammonium bromide(CTAB), chiral reagent, (-)-

cinchonidine, was coupled with the thiol group on mesoporous silica surface and 

immobilized around rhodium nanoparticles therefore to modify rhodium surface to be chiral 

environment for the coming reactants (Figure 5-1).  

This material (MSNRhNPsCD) was analyzed by 13C and 29Si CP/MAS solid state 

NMR spectroscopy, small angle X-ray diffraction (XRD), N2 adsorption/desorption, 

thermogravimetric analysis (TGA) (see Supporting Information). The N2 

adsorption/desorption isotherms (Figure S5-2) show that the rhodium nanoparticle and 

cinchonidine functionalized MSN has high surface area (SBET = 604 m2/g) with a very narrow 

pore size distribution (DBJH = 2.3 nm).  Powder small angle XRD pattern (Figure S5-3) 

shows MSNRhNPsCD is full of highly ordered hexagonally parallel channels as pure MSN 

does, which was further proved by Transmission Electronic Microscopy (TEM) (Figure 5-

2a). In TEM image, beside the parallel channels, some black spots could be seen allover the 

materials and the diameter of black spot was around 2.0 nm. STEM image of this material 

(Figure 5-2b), where RhNPs were shinning spots, indicates that RhNPs were distributed 

homogeneously through MSNRhNPsCD material and the size of RhNPs was not changed 

during the synthesis of material. Energy Dispersive X-ray (EDX) was used to determine the 

loading of Rh on MSNRhNPsCD and 1.0wt% (0.10 mmol/g) of Rh in this material was 

obtained basing on the atomic ratio between Si and Rh. As shown in X-ray Photoelectron 

Spectroscopy (XPS) (Figure 5-3a), the Rh 3d5/2 peaks (308 eV) could be fit by two peaks with 

bonding energies of 307.2 eV and 308.9 eV, corresponding to the metallic Rh (0) and the 

oxidized Rh (+3) respectively. As shown in Figure 5-3a, 88% of rhodium atoms were still 

metallic Rh(0) and only 12% was oxidized to Rh(+3) in the as-made MSNRhNPsCD, which 
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means RhNPs was quite stable through our synthesis procedure. And the oxidized Rh(+3) 

could be reduced by hydrogenation at room temperature easily back to metallic Rh(0) as 

shown in Figure 5-3b, which will be used as the catalyst in this study. 

T2 and T3 peaks in 29Si solid NMR (Figure 5-4a) indicate the incorporation of 

covalent linked organic functional groups in MSNRhNPsCD and the 13C solid NMR (Figure 

5-4b) indicates the presence of both organic functional groups and the complete removal of 

template-CTAB although there still has trace amount of PVP (Chemical shift at 178 ppm 

came from PVP’s carbonyl group). Immobilized CD loading on MSNRhNPsCD was around 

4.6wt% (15.5 x 10-2 mmol/g) basing on TGA results, which makes the mole ratio between 

CD and Rh to be 1.55.  

MSNRhNPsCD was tested in the enantioselective hydrogenation of ethyl pyruvate 

(Scheme 5-1) which is the best prochiral substrate for metallic Rh(0) catalysts.17,43 In order to 

compare the catalytic performance of MSN encapsulated RhNPs in enantioselective 

hydrogenation, MSNRhNPs without CD (Figure S5-5 – S5-8) and three other 

MSNRhNPsCDs with different CD loadings were synthesized. As shown in Figure 5-5, the 

chemical bound CD could increase the reactivity (TOF: turnover frequency) of RhNPs 

dramatically and the enantioselectivity of RhNPs quickly reach to a plateau with e.e. value 

around 58.0%. And these results are quite similar to that when MSNRhNPs were modified by 

physically adsorbed CD (Figure S5-9). And these results also suggested that the chiral 

modification capability of CD on Rh surface was the same after it was chemically bound 

MSN surface. More interestingly, in the case of MSNRhNPsCD, CD (molar ratio of CD/Rh 

was around 1.6) needed to reach the same enantioselectivity was less than that in the case of 

MSNRhNPs where molar ratio of CD/Rh was about 4.2, which prove that only adsorbed CD 

on Rh surface plays a role for the enantioselectivity instead of the free CD in bulk solution. 

As shown in Figure 5-6, both the activity and enantioselectivity of MSNRhNPsCD could be 

retained very well even after being recycled for more than ten times in the enantioselective 

hydrogenation of ethyl pyruvate, which indicated that both RhNPs and CD were very stable 

in MSNRhNPsCD without any leaching. 
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Conclusions 

In summary, we have demonstrated that both metal nanoparticles and chiral modifier 

or reagent could be immobilized on mesoporous silica nanoparticles without losing the 

reactivity and enantioselectivity of the catalyst, and the catalyst could be recycled or reused 

with the same reactivity and selectivity as the fresh catalyst does without any additional 

chiral reagent supplement. Therefore, we envision that our study could serve as a new 

catalyst design principle for enantioselective heterogeneous catalysis of various asymmetric 

reactions catalyzed by metallic catalysts modified with chiral reagents. 

 

Experimental Section 

Synthesis of catalysts: Rh nanoparticles were synthesized according to reported 

methods with minor modification.14,15 Typically, A 7.9 mmol/L PVP (Mw = 29,000 from 

Sigma-Aldrich) solution was prepared by dissolving the polymer into anhydrate ethanol.  The 

PVP ethanolic solution was mixed with 7.1 mmol/L aqueous RhCl3 (Rh, 38-40% from Strem 

Chemicals, Inc.) solution at room temperature, where the mole ratio between PVP and Rh3+ 

was 10.0. After reducing rhodium in ethanol, solvent was evaporated by Rotavap at 40 oC. 

The obtained black powder is named as RhNPs and its size was found around 2.0 nm with 

homogeneous distribution and clear crystalline structure (Figure S5-1). Under Ar, the as-

made RhNPs (480.0 mg, including 40.0 mg Rh) were re-dissolved into water (10.0 mL, 0.6 

mol) and mixed with water (470 mL, 26.1 mol), cetyltrimethylammonium bromide (CTAB, 

2.0 g, 5.5 mmol), NaOH (7.0 mL x 2.0 mol/L, 14.0 mmol) at room temperature prior to the 

hydrolysis of mercaptopropyltrimethoxysilane (STMOS, 0.4 mL, 2.2 mmol) and tetraethoxyl 

orthosilicate (TEOS, 10.0 mL, 44.8 mmol) at 80 oC for 2.0 hours. After the hydrolysis, the 

grey solid was filtrated and dried under vacuum overnight at room temperature. Template 

CTAB and PVP in the as-made material were removed by methanol (300 mL) at 60 oC with 

concentrated HCl (3.0 mL) for 2 hours under Ar, followed by filtration at room temperature 

and washing with copious water and methanol. About 2.3 g solid material was made after it 

was dried at 70 oC under vacuum overnight. The obtained solid was stirred with excess CD 
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(1200 mg, 4.1 mmol) and azobisisobutyronitrile (AIBN, 50 mg) in 100 mL dry chloroform 

under Ar for 24 hours after it was dried at 110 oC under vacuum for 12 hours. The solid was 

filtrated after being cooled under to room temperature and washed with methanol until no CD 

can be detected by Uv-vis spectrometer. The final solid, MSNRhNPsCD with 1.0wt% Rh 

(including 0.1 mmol Rh/g) and 4.6wt% CD (1.55 x 10-2 mmol/g), was reduced by H2 (500 

psi) at room temperature in THF for 1.0 hour before the reaction.  Other materials with 

different CD concentrations were synthesized with the same method except that different 

initial STMOS were used properly. 

Characterizations of catalysts: Powder X-ray diffraction patterns were gotten from 

a Scintag XDS-2000 powder diffractometer using Cu Kα irradiation. N2 

adsorption/desorption was done with a Micromeritics ASAP 2000 sorptometer. Particle 

morphology was observed by using a JEOL 840A scanning electron microscope (SEM) with 

a 10 kV acceleration voltage. TEM images were taken on a Tecnai G2 F20 transmission 

electron microscope with a 200 kV acceleration voltage. EDX data was collected from IXRF 

EDS2004 system installed on the JEOL 840A SEM. Thermal analysis was provided with a 

TA Instruments (formerly DuPont) thermal analysis system with Thermo-gravimetric 

analysis (TGA) module. XPS was used to characterize the rhodium nanoparticles in our 

catalysts on a Perkin-Elmer PHI 5500 XPS spectrometer with a position-sensitive detector, a 

hemispherical energy analyzer in an ion-pumped chamber (evacuated to 2 x 10-9 Torr), and a 

Al Kα (BE = 1486.6 eV) X-ray source at 300 W with 15 kV acceleration voltage. For all of 

our experiments, the binding energy of silicon was forced to be 304.5 eV which was used as 

an internal standard for other elements’ binding energy. 

Enantioselective hydrogenation of ethyl pyruvate catalyzed by MSNRhNPsCD: 

MSNRhNPsCD (50 mg, including 5.0 x 10-3 mmol Rh) and 5.0 mL THF were charged into a 

25 mL autoclave. After purged several times with hydrogen, the autoclave was pressurized to 

500 psi with H2. After 1.0 hours at room temperature with stirring, reduction of Rh was 

finished. 0.5 mL (5.0 mmol) ethyl pyruvate was added into the autoclave under Ar and the 

hydrogen was recharged into the reactor again until the pressure reached 900 psi. The 

reaction was started with the vigorous stirring. After 10 min, the reaction was stopped and 

the solution was separated by filtration and centrifuge before the supernatant was analyzed 
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by Varian 3900 GC with chiral capillary column (CP-ChiralSil-Dex CB, 25 m × 0.25 mm × 

0.25 μm). The turnover frequency (TOF) was equal to the moles of substrates that one mole 

rhodium can convert to product in one minute. The enantiomeric excess is obtained as: 

e.e.(%) = 100 x (R-S) / (R+S). 
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Figure 5-1. Synthesis of mesoporous silica nanoparticles which 
was functionalized by monodispersed rhodium nanoparticles and 
tethered (-)-cinchonidine (MSNRhNPsCD). 

Figure 5-2. TEM image (a) and STEM image (b) of MSNRhNPsCD. 
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Figure 5-3. XPS of as-made MSNRhNPsCD (a) and reduced MSNRhNPsCD (b). 
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Scheme 5-1. Enantioselective hydrogenation of ethyl 
pyruvate catalyzed by MSNRhNPsCD. 

 Figure 5-4. 29Si (a) and 13C (b) solid state NMR spectra of MSNRhNPsCD. 
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Figure 5-5. Effect of molar ratio between CD and Rh on 
enantioselective hydrogenation of ethyl pyruvate catalyzed 

by MSNRhNPsCD with different CD loading. 
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Figure 5-6. Recycling of MSNRhNPsCD in enantioselective 
hydrogenation of ethyl pyruvate. 
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Figure S5-1. TEM image (a) and HRTEM image (b) of rhodium nanoparticles (RhNPs). 
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Figure S5-2. BET isotherms and BJH pore size distribution curve of MSNRhNPsCD. 
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Figure S5-3. XRD of MSNRhNPsCD. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5-4. SEM image of MSNRhNPsCD. 
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Figure S5-5. SEM image of MSNRhNPs. 

 

  
Figure S5-6. TEM image(left) and STEM image (right) of MSNRhNPs. 
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Figure S5-7. BET isotherms and BJH pore size distribution curve of MSNRhNPs (SBET = 

990 m2/g, DBJH = 2.5nm). 
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              Figure S5-8. XRD of MSNRhNPs. 
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Figure S5-9. CD/Rh effects on enantioselective hydrogenation of ethyl pyruvate catalyzed 

by MSNRhNPs materials with adsorbed CD.  
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Abstract 

A Wilkinson-type achiral rhodium(I)-phosphine complex was covalently tethered on 

the surface of highly ordered, MCM-41 type mesoporous silica nanoparticles surface to yield 

a RhPMSN material. Interestingly, we discovered that these achiral RhPMSN particles could 

serve as efficient heterogeneous catalysts for the asymmetric hydrogenation of ethyl pyruvate 

to ethyl lactate. We demonstrated that the enantioselectivity of this reaction could be induced 

and tuned by introducing different concentrations of a chiral molecule, (-)-cinchonidine 

(CD), to the mesopores of RhPMSN in THF. The RhPMSN/CD catalytic system gave rise to 

a turnover frequency (TOF) of 37 h-1 and 50% enantiomeric excess (e.e.) for the (R)-ethyl 

lactate product in the presence of only 1.6 mM of CD. In contrast, the homogeneous 

counterpart, RhCl(TPP)3, yielded a TOF of 31 h-1 with no enantioselectivity even when a 

high concentration (21 mM) of CD introduced to the THF solution. To investigate whether 

this unprecedented chiral induction effect depends on the structural uniformity of MSN solid 

support, we immobilized the same rhodium-phosphine catalyst on the surface of an 

amorphous silica material (RhPNPS). Under the same reaction condition with CD as the 

chiral additive, only 14.3% e.e. for the (R)-ethyl lactate product was obtained, while the TOF 

only reached to 9.5 h-1. These results support that the observed induction of enantioselectivity 

depends on how these chiral CD molecules aggregate on the surface of solid support around 
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the catalytic functionality. We envision that our study could serve as a new design principle 

for heterogeneous catalysis of various asymmetric reactions. 

 

Introduction 

The rapidly growing demand in chemical and pharmaceutical industries for optically 

pure compounds and their limited natural resources have led to an increasing interest in 

asymmetric catalysis.1 To date, the field of asymmetric catalysis has been dominated by 

homogeneous asymmetric catalysis with transition metal-chiral ligand complexes because of 

their high activities and excellent enantioselectivities for various reactions.2 However, the 

advantages of heterogeneous catalysis,3 such as easy separation, efficient recycling, and 

superior control of handling and processing, have inspired researchers worldwide to design 

various materials for stereoselective catalysis on solid surfaces. 

Literature-reported asymmetric heterogeneous catalyst systems mostly took advantage 

of surface-immobilized chiral organometallic complexes4-6 and chiral agents adsorbed 

transition metal particles.4,7-9  Most catalytic systems of surface-immobilized chiral 

organometallic complexes were based on those well-studied homogeneous transition metal 

complex catalysts that exhibit both high enantioselectivity and reactivity. These selected 

complexes with chiral first coordination environment were then immobilized onto some 

insoluble supports by adsorption, encapsulation, or tethering using a covalent bond and/or 

electrostatic interaction.6,10 

In contrast to these synthetic asymmetric catalysts with chiral ligands, many enzymes 

could achieve very high enantioselectivity and reactivity by arranging an achiral catalytic 

functional group in conjunction with nearby chiral residues in the three-dimensionally 

controlled active site.  Apparently, the success of transferring this biological design principle 

to artificial catalytic systems hinges upon the ability to spatially organize chiral moieties 

three-dimensionally around the achiral catalyst in a close proximity and orientation. 

Recently, a series of enantioselective Aza-Baylis-Hillman reactions catalyzed by an achiral 

catalyst in homogenous medium of pure chiral agents was reported.11  Also, recent 

demonstrations on the matrix enhancement effect on the asymmetric catalysis induced by the 
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immobilization of chiral organometallic catalysts inside of structurally ordered mesoporous 

silicas12,13 further highlighted the potential of this kind of biomimetic approach for designing 

effective heterogeneous enantioselective catalysts. 

Results and Discussions 

Herein, we report on the synthesis of an asymmetric hydrogenation catalytic system, 

where a Wilkinson-type achiral rhodium(I)-phosphine complex was covalently tethered on 

the surface of highly ordered, MCM-41 type mesoporous silica nanoparticles surface 

(RhPMSN). Interestingly, also for the first time, we demonstrated that the enantioselectivity 

of the hydrogenation of ethyl pyruvate could be induced and tuned by introducing different 

concentrations of a chiral molecule, (-)-cinchonidine (CD), to the mesopores of RhPMSN. In 

contrast, no enantioselectivity could be observed in homogeneous solutions of same 

concentrations of Wilkinson’s catalyst (RhCl(TPP)3, TPP: triphenylphosphine) and CD as 

depicted in Figure 6-1.  

To ensure the homogeneous distribution of the rhodium-phosphine complex catalyst 

on the mesoporous silica surface, we first synthesized a 2-(diphenylphosphino)-

ethyltriethoxy-functionalized, MCM-41 type mesoporous silica nanoparticle (PMSN) via a 

co-condensation method that we had previously developed and reported.14-20 The 

experimental procedures for the synthesis and characterization of PMSN are detailed in the 

Supporting Information (SI). [RhCl(COD)2]2 (130.8 mg, 0.26 mmol) was added to a 20 mL 

THF suspension of PMSN (1.0 g) at room temperature and stirred under argon for 12 h. The 

resulting yellow solid was isolated by filtration, washed with excess THF, and dried at 90 °C 

under vacuum to yield the rhodium(I)-phosphine complex-functionalized RhPMSN material. 

The structure of RhPMSN was characterized by powder X-ray diffraction measurement, N2 

sorption analysis, and transmission electronic microscopy (TEM) as detailed in SI. Our 

results indicated that RhPMSN is comprised of short rod-shaped particles of 200 nm with a 

typical MCM-41 type of hexagonally packed, channel-like mesoporous structure with a total 

surface area of ca. 800 m2/g and an average BJH pore diameter of ca. 2.4 Å. These results 

were further confirmed by the images of TEM (Figure 6-2a) and scanning electronic 

microscopy (SEM) (Figure S6-8). As described in SI, the amounts of phosphine and rhodium 
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were measured to be ca. 0.78 mmol/g and 0.25 mmol/g, respectively (P/Rh = 3.1) by energy 

dispersive X-ray (EDX). The distinct peak at 39.5 ppm of the 31P solid-state NMR spectrum 

of RhPMSN confirmed the coordination bond of Rh-P suggesting the catalytic group is 

indeed a Wilkinson-type rhodium-phosphine complex. 

To investigate whether RhPMSN could effectively catalyze the asymmetric 

hydrogenation of ethyl pyruvate in the presence of different amounts of CD, RhPMSN (20.0 

mg, containing 5.0 μmol Rh) was added to a 10 mL THF solution of ethyl pyruvate (1.0 

mmol) with different concentrations (0 to 21 mM) of CD. The reaction mixture was 

pressurized to 300 psi with H2 at 40 °C. After 6 h, the products were isolated and analyzed. 

To compare the catalytic property of RhPMSN with that of the Wilkinson catalyst in 

homogeneous solution, we examined the hydrogenation of ethyl pyruvate catalyzed by 

RhCl(TPP)3 (5.0 mg, 5.0 μmol) with CD (0 to 21 mM) in THF under the same reaction 

condition. As shown in Figure 3a, the reactions catalyzed by RhPMSN/CD and 

RhCl(TPP)3/CD gave very different results in terms of enantioselectivity. In the case of 

RhCl(TPP)3/CD, a turnover frequency (TOF) of 31 h-1 was observed with no 

enantioselectivity even when we introduced a high concentration (21 mM) of CD in THF. In 

contrast, the MSN-immobilized counterpart, RhPMSN/CD, gave rise to a TOF of 37 h-1 and 

50% enantiomeric excess (e.e.) for the (R)-ethyl lactate product with only 1.6 mM of CD 

introduced in solution. The MSN surface-adsorbed CD (ca. 0.05 mmol/g) was measured by 

the thermogravimetric analysis (TGA) of RhPMSN/CD after reaction as described in the SI 

(Figure S6-12 and S6-13). This result indicated that the surface coverage of CD is 

approximately 6.4% when the e.e. reached to the maximum level (Scheme S6-1). 

While more CD could be adsorbed by the RhPMSN material as shown in Figure 3b 

and S11, the e.e. did not further increased (Figure 6-3a and S6-13). Both the TOF and 

enantioselectivity of RhPMSN/CD leveled at 35 h-1 and 22% e.e., respectively, when the 

solution concentration of CD exceeded 6.5 mM, i.e., 0.11 mmol/g of CD (14.1% surface 

coverage) was adsorbed by RhPMSN. As shown in the 31P solid-state NMR spectra (Figure 

2b and c), the chemical shifts of the free phosphine linker (-12.0 ppm) and the rhodium-

phosphine complex (+39.5 ppm) on the surface of RhPMSN were not altered after the 

hydrogenation reaction in the presence of CD. This result strongly suggested that the 



www.manaraa.com

 112 

 

observed enantioselectivity in the RhPMSN/CD system was not induced by the ligand 

exchange between the surface-bound phosphine linker and the solution CD. Therefore, it is 

reasonable to hypothesize that the surface-adsorption of CD in the mesoporous silica 

channels of MSN was responsible for the observed enantioselectivity. As shown in Figure 6-

3a and discussed previously, the degree of e.e. was affected by the concentration of CD. 

Apparently, the enantioselectivity of RhPMSN is dictated by the self-assembled surface 

adsorption of CD in the structurally ordered, porous cavity of MSN for creating an efficient 

chiral environment around the rhodium-phosphine complex for the asymmetric 

hydrogenation. 

To investigate whether this unprecedented chiral induction effect depends on the 

structural uniformity of MSN solid support, we immobilized the same rhodium-phosphine 

catalyst on the surface of an amorphous silica material (RhPNPS) with the BET total surface 

area of 60 m2/g. Under the same reaction condition with CD as the chiral additive, only 

14.3% e.e. for the (R)-ethyl lactate product was obtained (Figure 6-3a), while the TOF only 

reached to 9.5 h-1. Also, only a small quantity (< 0.03 mmol/g) of CD was adsorbed by 

RhPNPS (Figure 6-3b). These results further support that the observed induction of 

enantioselectivity indeed depends on how these chiral CD molecules aggregate on the surface 

of solid support around the catalytic functionality.  

Conclusions 

While the detailed mechanism for the surface adsorption and conformational 

arrangement of CD molecules on the mesoporous surface of RhPMSN are still under 

investigation, we have demonstrated that the enantioselectivity of the hydrogenation of ethyl 

pyruvate catalyzed by the achiral RhPMSN material could be induced and tuned by 

introducing a surface-adsorbing chiral agent, (-)-cinchonidine. We envision that our study 

could serve as a new design principle for heterogeneous catalysis of various asymmetric 

reactions. 
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Figure 6-1.  Schematic representation of asymmetric hydrogenation of ethyl 

pyruvate catalyzed by homogeneous RhCl(TPP)3/CD and heterogeneous 

RhPMSN/CD systems. 

Figure 6-2. (a) Transmission electron micrograph of RhPMSN and 31P solid-state NMR

of RhPMSN before (b) and after (c) reaction 
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Figure 6-3.  (a) Comparison of enantioselectivities of RhPMSN/CD and RhCl(TPP)3/CD in 

hydrogenation of ethyl pyruvate (■: e.e. of RhMSN/CD, ▲: e.e. of RhCl(TPP)3/CD, ◆: 

TOF of RhMSN/CD, x: TOF of RhCl(TPP)3/CD,  □: TOF of RhPNPS/CD, *: e.e. of 

RhPNPS/CD). (b) Comparison of adsorbed CD on RhPMSN and RhPNPS. 
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Supporting Information 

 

1. Synthesis of phosphine-functionalized mesoporous silica nanoparticles (PMSN) 

In order to distribute the functional group homogeneously on the mesoporous silica 

surface, co-condensation method was used. All the following reactions and manipulations 

were carried out under argon. A mixture of CTAB (2.0 g, 5.49 mmol), 2.0 M of NaOH (aq) 

(7.0 mL, 14.0 mmol) and H2O (480 g, 26.67 mol) was heated at 80 ºC for 30 min. To this 

clear solution, TEOS (9.34 g, 44.8 mmol) and 2-(diphenylphosphino)ethyltriethoxysilane ( 

1.0 mL, 3.0 mmol) were added rapidly via injection, yielding an opaque reaction mixture. 

The white solid products of synthesis were observed after vigorous stirring of the mixture for 

~2 min. The as-synthesized phosphine-functionalized mesoporous materials were obtained 

after additional 2 hours of heating at 80 ºC, followed by hot filtration, washing with excess of 

water and methanol, and drying under vacuum. An acid extraction of the CTAB surfactant 

was performed at 60 ºC, by placing 1.0 g of the as-synthesized material in a mixture of 

methanol (100 mL) and hydrochloric acid (0.5 mL) for 6 h. The resulting surfactant-removed 

solid products were filtered and washed with excess water and methanol and then dried under 

vacuum for several hours at 90 ºC. The highly ordered mesoporous structure of PMSN was 

characterized by nitrogen sorption isotherms (BET surface area: 827.1 m2/g, pore size: 2.3 

nm) (Figure S6-1), powder X-ray diffraction (XRD) (Figure S6-2), scanning electron 

microscopy (SEM) (Figure S6-3), and transmission electron microscopy (TEM)(Figure S6-

4). The amount of phosphine in PMSN was determined by energy dispersive X-ray (EDX) 

and was around 0.80 mmol per gram particle. 31P solid-state NMR (Figure S6-5) proved that 

most of the phosphine ligands on PMSN material are still P(+3) whose chemical shift is 

around -12.0 ppm and the oxidation of phosphine (P(+5), +33.0 ppm) was very limited here 

through our synthesis of this material. 
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Figure S6-1. BET isotherms and BJH pore size distribution curve of PMSN. 
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Figure S6-2. XRD of PMSN. 

 
Figure S6-3. SEM image of PMSN. 
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Figure S6-4. TEM image of PMSN. 

 
Figure S6-5. 31P solid-sate NMR spectrum of PMSN. 

 

2. Synthesis of catalyst RhPMSN 

Under argon, [RhCl(COD)2]2 (130.8 mg, 0.26 mmol) was stirred with 1.0 g PMSN 

(including 0.80 mmol phosphine ligand) in 20 mL THF at room temperature overnight. The 

produced yellow solid was separated by filtration, washed with excess THF, and dried at 90 
oC under vacuum for several hours. The mesoporous structure of RhPMSN was characterized 
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by nitrogen sorption isotherms (BET surface area: 813.7 m2/g, pore size: 2.3 nm) (Figure S6-

6), powder X-ray diffraction (XRD)(Figure S6-7), scanning electron microscopy 

(SEM)(Figure S6-8), and transmission electron microscopy (TEM). Amounts of phosphine 

and rhodium in RhPMSN was determined by energy dispersive X-ray (EDX) and was around 

0.78 mmol per gram particle and 0.25 mmol per gram particle prospectively (P/Rh = 3.1). 

The chemical structure of RhPMSN was confirmed by 29Si solid-state NMR (Figure S6-9), 
13C solid-state NMR (Figure S6-10), 31P CP MAS NMR (Figure 6-2b). 
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Figure S6-6. BET isotherms and BJH pore size distribution curve of RhPMSN. 
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Figure S6-7. XRD of catalyst RhPMSN. 
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Figure S6-8. Scanning electron microscopy (SEM) of RhPMSN. 

 

 
Figure S6-9. 29Si solid-sate NMR spectrum of RhPMSN. 
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Figure S6-10. 13C solid-state NMR spectrum of RhPMSN. 

 

3. Catalytic hydrogenation of ethyl pyruvate 

3.1. Hydrogenation of ethyl pyruvate catalyzed by Wilkinson’s catalyst/(-)-cinchonidine 

Wilkinson’s catalyst (RhCl(TPP)3, 5.0 mg, 0.005 mmol), cinchonidine (its amount 

was changed in different test), 10 mL THF, ethyl pyruvate (0.1 mL, 1.0 mmol) were loaded 

in a 25 mL autoclave. After purged several times with hydrogen, the autoclave was 

pressurized to 300 psi with H2. After 6.0 hours at 40 oC with stirring, reaction was stopped. 

The solution was analyzed by Varian 3900 GC with chiral capillary column (CP-ChiralSil-

Dex CB, 25 m × 0.25 mm × 0.25 μm). 

 

3.1. Asymmetric hydrogenation of ethyl pyruvate catalyzed by RhPMSN/(-)-cinchonidine 

RhPMSN (20 mg, including 0.005 mmol Rh), cinchonidine (its amount was changed 

in different test), 10 mL THF, ethyl pyruvate (0.1 mL, 1.0 mmol) were loaded in a 25 mL 

autoclave. After purged several times with hydrogen, the autoclave was pressurized to 300 

psi with H2. After 6.0 hours at 40 oC with stirring, reaction was stopped. The solution was 
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separated by filtration and centrifuge before the supernatant was analyzed by Varian 3900 

GC with chiral capillary column (CP-ChiralSil-Dex CB, 25 m × 0.25 mm × 0.25 μm). 

 

4. Characterization of (-)-cinchonidine adsorbed on RhPMSN surface 

After hydrogenation of ethyl pyruvate, the solid was separated from the 

tetrahydrofuran solution by centrifuge, washed with tetrahydrofuran and dried under vacuum 

at 70 oC overnight. The amount of (-)-cinchonidine was detected by TGA 

(Thermogravimetric Analysis). As shown in Figure S6-11, the amount of (-)-cinchonidine on 

catalysts surface increased with its increasing concentration in solution. However, 

enantioselectivity of hydrogenation of ethyl pyruvate increased with (-)-cinchonidine 

concentration in solution as well as (-)-cinchonidine on catalyst surface before 

enantioselectivity reached its highest point (50.0 % e.e.) and then went down back and be 

stabilized at 22.0 % e.e. with higher (-)-cinchonidine concentration in solution and catalyst 

surface (Figure S6-12 and S6-13). 
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Figure S6-11. Effect of (-)-cinchonidine in solution on (-)-cinchonidine adsorbed on 

RhPMSN surface. 
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Figure S6-12. Effect of (-)-cinchonidine in solution on enantioselectivity. 
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Figure S6-13. Effect of RhPMSN-adsorbed (-)-cinchonidine on enantioselectivity. 

 

 

From Figure S6-12 and S6-13, it was found that e.e. was increased with the CD on 

RhPMSN before [CD]solution was 1.63 mmol/L, where 0.05 mmol CD was adsorbed on per 

gram RhPMSN surface, which means enantioselectivity is the best here with [CD]RhPMSN /Rh 

= 0.2. 
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The coverage of RhPMSN-adsorbed cinchonidine is about 6.4 % when e.e. reaches to the 

highest point, where 800 m2/g is the BET surface area of RhPMSN (see Scheme S6-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme S6-1. Estimation of the surface coverage of adsorbed (-)-cinchonidine on RhPMSN. 

 

 

 

 

Area of CD = (2√3) r2 = 1.7 × 10-18 m2, where r is ~6.9Å. 

Area of 0.05 mmol of CD = 0.05 × (6.02 × 1023) × (Area of CD) = 51.3 m2 

Total BET surface area of RhPMSN = 800 m2/g 

The % surface coverage of 0.05 mmol of CD adsorbed on 1 g of RhPMSN is:

(51.3 m2)/(800 m2) × 100 = 6.4% 
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Abstract 

A detailed study of the chemical structure of mesoporous silica catalysts 

containing rhodium ligands and  nanoparticles  (RhPMSN)  was  carried  out  by  multi-

dimensional  solid-state  NMR  techniques. The degree of functionalization of the 

rhodium-phosphinosilyl complex to the surface of the RhPMSN channels was 

determined by 29Si NMR experiments. The structural assignments of the rhodium- 

phosphinosilyl complex were unambiguously determined by employing the novel, 

indirectly detected heteronuclear correlation (13C-1H and 31P-1H idHETCOR) 

techniques, which indicated that oxidation of the attached phosphinosilyl groups and 

detachment of Rh was enhanced upon syngas conversion. 

 

Introduction 

Mesoporous silica nanoparticles (MSNs) have a wide range of applications, due to 

their high surface area and controllable morphology.1,2 The characteristics of MSNs 

are highly dependent  upon  the  synthetic  conditions  used,  especially  the  silica source,  

type  and  ionic  strength  of  the  surfactant,  pH  of  the reaction mixture, temperature 

and reaction time.3-14 Functionalization of the MSN surfaces with organic or inorganic 
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groups, as well as incorporation and immobilization of metal complexes (e.g.,  

containing  Pt,  Pd,  Rh)  via  organic  ligands,  is  a  common practice towards obtaining 

MSN materials for uses in biotechnology15-21 and catalysis22-34. Phosphine ligands have 

received much interest in the binding of  metal  complexes  to  silica  supports,  as  they  

form  strongly anchored  and  stable  structures,  are  easily  and  inexpensively 

synthesized, and are useful for a variety of catalytic applications.32,35-41 In particular, 

rhodium-phosphine complexes immobilized  on  silica  surfaces (RhPMSN),  typically  

synthesized  via a  co-condensation  reaction  in  an  acidic  medium,42  are  of interest 

due to their excellent catalytic activity and selectivity in hydroformylation30,40 and 

hydrogenation processes41. 

Numerous  analytical tools are used  to investigate  the  morphology  and  other  

characteristics  of  mesoporous  materials, including  SEM,  TEM,  N2-adsorption,  FTIR,  

XRD,  TGA,  and  EDX. Solid-state NMR (SSNMR), however, has proven to be a very 

powerful technique in the determination of the bulk and surface structures of these 

materials, by providing detailed information about the local molecular environments.43 

Silicon-29 SSNMR, in particular, is used to characterize mesoporous silica materials. 

Utilizing  cross-polarization (CP)  and  direct-polarization (DP) excitation methods in 

concert with magic-angle spinning (MAS), qualitative and quantitative information 

about the silicon functionalities  can  be  readily  obtained.16,44  Two-dimensional 

heteronuclear correlation (2D HETCOR) SSNMR techniques involving  1H,  29Si,  13C  and  

other  nuclei  can  provide  more  detailed structural information about these materials. 

We have recently demonstrated numerous advantages of using fast MAS (at 40 kHz) with 

1H-13C and 1H-29Si HETCOR NMR of such systems.45-50 In particular, a large sensitivity 

gain has been achieved by using the so-called indirect detection method, i.e., the 

detection of high-g (1H) rather than low-g (13C, 15N, etc.) nuclei.48 This type of data 

acquisition has been hitherto impractical due to the lack of adequate 1H decoupling 

schemes. Herein, we employ these methods to detail the structure of MSNs 

functionalized with rhodium-phosphine ligands (Ph2P(CH2)2Si(OCH2CH3)3)3RhCl) under 

basic conditions. By using the rhodium-phosphine complex as the precursor, we aimed 

to develop mesoporous silica supported Rh catalytic systems for the selective production 
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of ethanol and other alcohols from syngas. Rhodium nanoparticles,  which  are  known  

to  be  very good  catalysts  for the production of bio-fuels from syngas, were detected 

after the functionalized MSNs were used for the selective production of  ethanol  

from  syngas.  Understanding  the  ligands’  structure  in unreacted and reacted catalysts 

will help to determine whether their role is solely as a precursor for the formation of 

nanoparticles,  or  if  they  directly affect  the  catalytic  performance.  The activity and 

selectivity of these catalysts is currently being investigated in our laboratory.  

 

Experimental 

The rhodium phosphine mesoporous silica catalysts (RhPMSN) were synthesized 

via a co-condensation process inwhich1.0 mL (3.0 mmol) of 2-(diphenylphosphino)-

ethyltriethoxysilane and 10 mL tetraethoxysilane (TEOS) were injected into 480 mL 

aqueous solution of 2.0 g cetyltrimethylammonium bromide(CTAB) and 14 mmol  

NaOH at 80 oC,  under vigorous stirring in a 2 L flask. The solid product was isolated 

by filtration after 2 h, washed with excess methanol and dried under vacuum. 

Metallation was conducted by stirring the resulting phosphinoalkyl-functionalized 

mesoporous silica material in dry THF with [Rh(COD)Cl]2 under Ar at room 

temperature for 12 h (P/Rh = 3.1). The solid was then isolated by filtration, washed with 

excess THF and MeOH and dried at 90 1C under vacuum. The syngas reaction was carried 

out in a bench top high pressure reactor at  280 oC under  450  psi  with  a  2:1  ratio  of  

H2:CO.  The unreacted (as-synthesized) and reacted (in a syngas conversion process) 

materials are referred to as RhPMSN and RhPMSN*, respectively. Rhodium nanoparticles 

with an average size of 5 nm, embedded in the channel walls of RhPMSN* were detected 

via SEM and TEM measurements.  

Solid-state NMR experiments were performed at 9.4 T and 14.1 T on a Chemagnetics 

Infinity spectrometer and a Varian NMR system 600 spectrometer, equipped with 3.2 and 1.6 

mm MAS double-tuned probes, respectively.  29Si, 13C, and 1H chemical shifts were all 

referenced with respect to tetramethylsilane (TMS) at 0 ppm and 31P chemical shifts were 

referenced with respect to 85% H3PO4 at 0 ppm.  The experimental conditions are listed 
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below with the following denotations of B0, Rν , H
RFν , X

RFν , RDτ , CPτ  and NS representing the 

static magnetic field, the rate of sample rotation, magnitude of radiofrequency magnetic field 

applied to 1H and X spins, the relaxation delay, the cross polarization time, and the number 

of scans, respectively. 

1H MAS:  B0 = 14.1 T; Rν  = 25-35 kHz; H
RFν  = 62.5-65 kHz; RDτ  = 2 s; NS = 4 (RhP 

and RhPMSN) and 32 (RhPMSN*). 

1H-13C CP/MAS:  For RhP and RhPMSN:  B0 = 9.4 T; Rν  = 20 kHz; H
RFν  during 

excitation = 112 kHz; H
RFν  during CP = 30 kHz; H

RFν  during TPPM decoupling = 78 kHz; 

C
RFν  = 50 kHz; RDτ  = 5 s; CPτ  = 1 ms; NS = 8640.  For RhPMSN*:  B0 = 14.1 T; Rν  = 25 

kHz; H
RFν  during excitation = 87.5 kHz; H

RFν  during CP = 87 kHz; H
RFν  during TPPM 

decoupling = 6 kHz; C
RFν  = 68 kHz; RDτ  = 2 s; CPτ  = 1.5 ms; NS = 16384. 

1H-29Si CP/MAS:  B0 = 9.4 T; Rν  = 20 kHz; H
RFν  during excitation = 76 kHz; H

RFν  

during CP = 65 kHz; H
RFν  during TPPM decoupling = 50 kHz; Si

RFν  = 45.5 kHz; RDτ  = 1 s; 

CPτ  = 6 ms; NS = 16384 (RhPMSN) and 8192 (RhPMSN and RhPMSN*).  

1H-31P CP/MAS:  For RhP and RhPMSN:  B0 = 9.4 T; Rν  = 20 kHz; H
RFν  during 

excitation = 109 kHz; H
RFν  during CP = 30 kHz; H

RFν  during TPPM decoupling = 83 kHz; 

P
RFν  = 50 kHz; RDτ  = 5 s; CPτ  = 1.5 ms; NS = 1024.  For RhPMSN*:  B0 = 14.1 T; Rν  = 25 

kHz; H
RFν  during excitation = 62.5 kHz; H

RFν  during CP = 62.5 kHz; H
RFν  during TPPM 

decoupling = 133 kHz; P
RFν  = 85 kHz; RDτ  = 2 s; CPτ  = 1.5 ms; NS = 24576.  

13C-1H indirect detection HETCOR (idHET):  B0 = 14.1 T; Rν  = 35 kHz; H
RFν  during 

excitation = 62.5 kHz; H
RFν  during CP = 54 kHz; H

RFν  during π-decoupling = 62.5 kHz; C
RFν  

during CP = 81 kHz; C
RFν  during SPINAL-64 decoupling = 9 kHz; RDτ  = 1 s; CPτ  = 1 ms; 

NS = 32; rows = 160; 1t  increments = 25 μs. 
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31P-1H indirect detection HETCOR (idHET):  B0 = 14.1 T; Rν  = 35 kHz; H
RFν  during 

excitation = 65 kHz; H
RFν  during CP = 65 kHz; H

RFν  during π-decoupling = 9 kHz; P
RFν  

during CP = 100 kHz; P
RFν  during SPINAL-64 decoupling = 180 kHz; RDτ  = 2 s; CPτ  = 1.5 

ms; NS = 64 (RhPMSN*) and 128 (RhP and RhPMSN); rows = 128 (RhP and RhPMSN) and 

350 (RhPMSN*); 1t  increments = 20 μs. 
29Si, 13C,  and 1H  chemical  shifts  were  all  referenced  with respect  to 

tetramethylsilane  (TMS)  at  0 ppm  and  31P  chemical shifts were referenced with respect 

to 85% H3PO4  at 0 ppm. 

Results and discussions 

The 29Si CPMAS NMR spectra of RhPMSN and RhPMSN* are shown in Figure 7-

1a and b. Represented in the spectra are silicon sites of the types Q, T and M. The Q 

sites form the framework of the MSNs, with the wall core comprised of Q4-type silicon 

atoms ((SiO)4Si) and  the surface containing Q2 ((SiO)2Si(OH)2) and Q3 ((SiO)3Si(OH)) 

sites. The resonances representing Q4, Q3 and Q2 sites are typically found near 110, 100, 

and 90 ppm, respectively.16, 51-55 The sites denoted as T2  and T3, observed at approximately 

58 and 68 ppm,  are assigned to (SiO)2Si(R’ )R and ( SiO)3SiR functionalities, where R 

represents the attached functional groups and R’ = OC2H5 or OH.  

The presence of T sites indicates that functionalization of the MSN surfaces has indeed 

occurred. We will later demonstrate that the functional groups in RhPMSN correspond 

to rhodium phosphine complexes. The M sites ((SiO-Si-(CH3)3) are observed at around 13 

ppm, in agreement with earlier reports.42 These sites result from silylation (‘‘capping’’), 

a process by which surface hydroxyl hydrogens are substituted by trimethylsilyl 

groups.23,52,56,57 Indeed,  the  RhPMSN  sample which  was  not silylated  did  not exhibit 

this resonance (Figure 7-1c). Silylation was carried out using TMS-Cl ((CH3)3SiCl), 

prior to CTAB extraction, to increase the stability of the RhPMSN structure. Closer 

examination of the 29Si spectra reveals that broadening of individual Qn resonances occurs 

upon reaction of RhPMSN with syngas. It affected mainly the resonances representing 

the surface sites in RhPMSN* (i.e. the resonance representing Q3 sites in Figure 1b was 
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broadened by roughly 15%) and to a lesser extent (5%), the Q4 sites. It is well known that 

the range of line widths in 29Si MAS spectra is associated with the degree of structural 

disorder. In an earlier study of cab-o-sil, increased 29Si line widths were observed in both 

CP and DPMAS SSNMR spectra, compared to the silica gels.58  This  effect  was  

attributed  to  a  wider distribution  of  bond  distances  and  angles  formed  at  higher 

temperatures  used  in  the  production  of  cab-o-sil.  A  similar broadening  due  to  

heat  treatment  was  also  observed  in  the dehydration of silica gels.52,59 The observed 

broadening of the resonances representing the Q sites in the spectrum of RhPMSN* 

(Figure 7-1b)  results  from  additional  heating  during  the  syngas reaction at 280 oC. 

The  relative  concentrations  of  silicon  sites in  the  RhPMSN were found via 

deconvolution and integration of the resonances in the  29Si  DPMAS  spectrum  of  Figure 

7-1c-d.  Due to slow spin-lattice relaxation of 29Si nuclei, the DPMAS experiment 

required more experimental time (see the experimental section), but provided relative 

peak intensities that are not distorted by the 1H-29Si CP  

process.  An overall T site concentration of 3.7(±0.5)% was determined, which 

correlates well with the result obtained from EDX measurements of the same sample 

(3.8%). The other samples were not examined via DPMAS, however, valid trends can be 

observed in the CPMAS spectra because they were all acquired under   similar   

conditions. First, partial dehydroxylation of RhPMSN has occurred upon syngas 

conversion, as evidenced by the lower concentrations of Q2 and Q3 sites in 

RhPMSN*(compare Figure 7-1a and b). Although the overall concentration of T sites 

remained unchanged, it appears that partial conversion of T2   to T3   silicon sites has 

occurred upon reaction with syngas, although the exact concentration of T2 sites is difficult 

to estimate without using much longer acquisition of data. Most likely, this process 

occurred via cleavage of the ethoxy groups together with dehydroxylation of the 

neighboring Q sites. Finally, the observed concentration of  M  sites  is  greater  than  in  

previously studied rhodium phosphinosilyl functionalized MSNs.42 The 13C-1H 

idHETCOR spectra of RhPMSN and RhPMSN* are nearly identical, thus only the 

spectrum of RhPMSN is shown in Figure 7-2, along with the corresponding 1D 13C 

CPMAS and 1H DPMAS results. The observed correlations can be assigned to various 
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components of the phosphine ligands, as shown in the figure. The resonances representing 

CTAB have not been detected, which proves that it has been completely removed.45,46 

However, weak resonances from the ethoxy groups are observed, which confirms the 

aforementioned incomplete cleavage of ethoxysilane species. 

The  1D  31P  CPMAS  NMR  spectra  of  unreacted  (RhPMSN) and reacted 

(RhPMSN*) rhodium-phosphine MSN complexes are shown in Figure 7-3a and b. Due to 

the substantial breadth of the 1D spectra relative to the differences in chemical shifts, 

the 31P-1H idHETCOR experiment was employed to offer additional information about 

the phosphorus species. The 2D spectra of RhPMSN and RhPMSN* are shown in 

Figure 4a and b, respectively. Also shown, in Figure 3c, is a spectrum of MSNs 

functionalized with phosphine ligands without rhodium. 

The  1D  and  2D  31P  spectra  of  RhPMSN  exhibit  a  broad nonsymmetrical  

resonance  centered  at 39 ppm,  with  a  less intense contribution at 36 ppm. The 31P-1H 

idHETCOR spectrum reveals strong correlations between 31P and methylene (2.5 ppm), as 

well as aromatic (7.5 ppm) protons, and somewhat weaker correlations to the methylene 

protons near the T sites. As expected, protons associated with M sites and the ethoxy 

groups, which dominated the 1H MAS spectrum shown in the top part of Figure 7-2, do 

not correlate with phosphorus. Upon reaction with syngas, the 31P resonance maximum 

shifts slightly upfield from 39 to 36 ppm (Figure 7-3b and 6-4b), while exhibiting the 

same correlation to the 1H nuclei. By deconvoluting the  1P spectra before and after the 

syngas conversion, the relative intensity of resonances at 36 ppm in unreacted and 

reacted samples was estimated to be 45(±5)% and 60(±5)%, respectively. 

To assign the 31P spectra, we first note that the surface-bound ligand  without  Rh  

yielded  a  peak  at  12 ppm  (Figure 7-3c),  in accordance  with  earlier studies,36,60,65 

whereas  the  non-attached (free)  ligands (Ph2P(CH2)2Si(OCH2CH3)3),  with  a 31P 

resonance expected at 8.4 ppm,32,42 have not been detected in any of the studied samples. 

The 31P peak at 39 ppm is thus assigned to the silica-bound phosphine complex 

coordinated to rhodium. While several previous solid and liquid  state  NMR studies of 

silica catalysts containing transition metal complexes, including  rhodium  phosphine 

complexes, have reported two different 31P  NMR  resonances  assigned  to  the  cis-  and  
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trans-geometry around the metal center,32,36,61-65 the chemical shift differences between 

these two confirmations are much greater (10 ppm) than the 3 ppm difference observed in 

Figure 7-3a and 6-3b and 6-4a and 6-4b. A more reasonable explanation for the downfield 

shift is oxidation of the phosphine complex. Indeed, it is known that in the case of 

phosphine ligands immobilized on silica surfaces, the 31P chemical shift changes from -

10 (±5) to 40(±5) ppm upon oxidation.36,60,65 For example, a 31P resonance at 38ppm was 

observed  in oxidized phosphine complexes immobilized on capped (silylated) silica 

surface.36,65,66 When the supported phosphine ligands are coordinated with metals, 

their oxidation causes detachment of the metal and a slight upfield shift of the 31P 

peak.38,65 Note that we have observed a peak at 36 ppm in MSN functionalized with 

phosphine alone (Figure 7-3c). Therefore, we conclude that the observed change of the 

chemical shift of the 31P resonance in the 2D 31P-1H idHETCOR spectrum of RhPMSN* 

is indeed due to the oxidation of the phosphine group and the detachment of rhodium. 

Our studies indicated that the formation of 5 nm Rh nanoparticles is accompanied 

by oxidation of phosphine ligands on the support. These Rh nanoparticles showed good 

product selectivity for alcohol production at low temperature (< 200 oC). The additional 

role that the oxidation-induced detachment of rhodium played in the product selectivity 

of these catalytic systems is currently under investigation. 

 

Conclusions 

An in-depth solid-state NMR study of mesoporous silica nanoparticles (MSNs) 

functionalized with rhodium phosphine ligands has been presented. Functionalization 

of the ligand was confirmed by the presence of T sites in the 29Si CPMAS NMR spectrum 

and quantification of these sites was achieved via integration of the 29Si DPMAS NMR 

spectrum, in which the percent of T sites was found to be 3.7%. Both 1D and 2D SSNMR 

experiments showed that covalent attachment of the rhodium-phosphine ligand to the 

MSN surfaces was successful, as well as provided structural assignments of the ligand 

and the MSNs themselves.  Both 13C-1H and 31P-1H idHETCOR experiments provided 
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structural details of oxidized and non-oxidized phosphine species, otherwise 

indiscernible in conventional 1D CPMAS NMR experiments. 
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Figure 7-1. 29Si CP/MAS NMR spectra of mesoporous silica 

nanoparticles functionalized with rhodium-phosphine ligands:  a) 

unreacted catalyst (RhPMSN) and b) catalyst reacted with syngas 

(RhPMSN*). 
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Figure 7-2. Two-dimensional 13C-1H indirectly detected HETCOR 

spectrum of RhPMSN.  The weak correlation representing the CH3 

peak of the ethoxy group is not labeled. 
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Figure 7-3. 1H-31P CP/MAS spectra of a) RhPMSN and b) RhPMSN* 

and c) Phosphinosilyl groups covalently attached to MSN surfaces. 
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Figure 7-4. Two-dimensional 31P–1H indirectly detected 

HETCOR spectra of (a)RhPMSN and (b)RhPMSN*. 



www.manaraa.com

 142 

 

CHAPTER 8.  KINETICS OF OXIDATION OF ORGANIC AMINE WITH 
A CR(V) SALEN COMPLEX IN HOMOGENEOUS AQUEOUS 

SOLUTION AND ON THE SURFACE OF MESOPOROUS SILICA 

 

A paper published in Dalton Transactions, 2009, 3237-3246. 

Ewa Szajna-Fuller, Yulin Huang, Jennifer Rapp, Gezahegn Chaka, Victor S. Y. Lin*, 

Marek Pruski* and Andreja Bakac* 

Ames Laboratory and Chemistry Department, Iowa State University, Ames, IA 50011 

*Corresponding authors. 

 

Abstract 

A comparative study of catalytic activity under homogeneous and heterogeneous 

conditions was carried out using the (salen)CrIII-catalyzed oxidation of tetramethylbenzidine 

(TMB) with iodosobenzene as a model reaction. The oxidation of TMB with iodosobenzene 

using MSN-(salen)CrIII as a heterogeneous catalyst exhibited both similarities and differences 

with the analogous homogeneous reaction using (salen)CrIII(H2O)+ as a catalyst in aqueous 

acetonitrile. In the presence of 0.10M HClO4, the two catalytic reactions proceeded at similar 

rates and generated the doubly oxidized product TMB2+. In the absence of acid, the radical 

cation TMB•+ was produced. The kinetics of the heterogeneous reaction in the absence of 

added acid responded to concentrations of all three reagents, i.e. (salen)CrIII, TMB, and 

PhIO. 

Introduction 

One of the important features of heterogeneous catalysis is the ease of separation and 

reuse of the catalyst.  Homogeneous catalysis, on the other hand, appears to offer faster 

kinetics and better control of both kinetics and products, although this could be an incorrect 

perception arising from the better insight into homogeneous catalysis in general.  Ideally, the 

ease of separation, large rates, and product selectivity should all be combined in a single, 
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heterogeneous catalyst.  Comparative studies of catalytic reactions under homogeneous and 

heterogeneous conditions are therefore necessary to get detailed mechanistic information, to 

extract the roles of various parameters and conditions in different phases, and to use this 

knowledge in the building of the next generation of catalysts.   

With this goal in mind we undertook a study of the oxidation of an organic amine, 

tetramethylbenzidine (TMB), with (salen)CrVO+ under both homogeneous (aqueous 

acetonitrile) and heterogeneous (mesoporous-silica) conditions.  Both the oxidant and the 

amine are well-defined and well-behaved species with excellent spectroscopic and redox 

properties to facilitate the detection and assignment of intermediates and individual reaction 

steps.  Also, transition metal salen complexes have already found extensive use in synthesis 

and catalysis which makes them a worthwhile target for mechanistic studies.  Among the 

metals, manganese and chromium appear to be the most widely used,1-5 especially in the area 

of enantioselective catalysis,6-9 although salen complexes of most of the transition metals are 

now known.8,10,11   

Despite the great reactivity of (salen)CrvO+ and ligand-substituted derivatives in 

several types of reactions, this molecule is quite stable in the absence of reactive substrates.  

Detailed spectroscopic, electrochemical, and crystallographic characterization has been 

carried out.1,2,12  The one-electron reduction of (salen)CrvO+ in acetonitrile has E1/2 = 0.47 V 

against SCE,2 which makes this Cr(V) complex a moderate 1-e oxidant.  To the best of our 

knowledge, the 2-electron CrV/CrIII potential has not been reported, but the process is clearly 

favorable thermodynamically, as shown by the successful oxygen atom transfer, a 2-e 

process, to various acceptors.   

Even though a large volume of mechanistic work on (salen)CrVO+ exists, challenges 

remain.  For example, the distinction between 1-e and 2-e reduction is not always 

straightforward.  Sometimes, conclusions reached in some laboratories13 contradict those 

from others,14 as in the oxidation of organic sulfides.  Organic amines appear to have no 

consistent reactivity patterns, and both 1-e and 2-e reactions have been proposed depending 

on the choice of the amine and reaction conditions.3  One would expect a straightforward 

chemistry with inorganic 1-e reductants, such as VIVO2+, but this, too is complicated by the 

formation of a dimetallic intermediate.15   
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The oxidation of TMB to its intensely absorbing, stable radical cation has made it 

useful as both a reagent and kinetic probe in mechanistic studies in aqueous and nonaqueous 

solvents.16-20  TMB is also an efficient photosensitizer for reductions of various substrates in 

both solution and micelles.21-24 These features seem well suited to address some of the key 

factors responsible for the kinetic and mechanistic differences, as well as similarities between 

homogeneous and heterogeneous electron transfer that we wish to discuss in this work.   

N N

N N N N

TMB

TMB2+TMB  +  
In our recent work on the reaction of (salen)CrVO+ with another amine, 

tetramethylphenylene diamine (TMPD), we have unequivocally demonstrated an initial 2-e 

interaction followed by comproportionation with TMPD which yielded TMPD•+ as the 

ultimate product.25  The assignment of the oxidation state to the initial product of the TMB 

reaction was initially thwarted by the widely disparate and sometimes conflicting spectral 

data19,26-30 for the two oxidized forms, TMB•+, and TMB2+.  Part of the problem appears to lie 

in the similarity of the visible spectra of these two species, which has sometimes led to 

erroneous assignment of the reaction product.26  We have therefore re-determined and 

assigned the UV-Vis spectra of TMB, TMB•+, and TMB2+ by a combination of spectral 

measurements and redox titrations with Cu2+ in CH3CN/H2O (9:1, v/v).   

 

Experimental 

Synthesis of amine-functionalized mesoporous silica nanoparticle. This material 

was synthesized by a co-condensation reaction.31-33 A mixture of cetyltrimethylammonium 

bromide (CTAB, 5.49 mmol), 2.0 mol / L of aqueous NaOH (7 mL, 14 mmol) and water 

(480 mL, 26.67 mol) was heated at 80 oC for 30 min.  Tetraethylorthosilicate (TEOS, 10 mL, 

51.40 mmol) and 3-aminopropyltrimethoxysilane (2 mmol) were rapidly injected into the 

vigorously stirred solution, forming a solid white precipitate.  After 2 hours, the precipitate 

was separated by hot filtration, washed with copious amount of methanol and dried under 
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vacuum overnight.  Acid extraction was used to remove the surfactant (CTAB) by placing 

1.0 gram of the solid material in methanol (100 mL)/ hydrochloride acid (1.0 mL) solution at 

60 oC and vigorously stirring the suspension for 6 hours.  The resulting AMSN was collected 

by hot filtration, washed with large amounts of water and methanol and dried at 90 oC under 

vacuum overnight.   

Synthesis of MSN-(salen) and MSN-(salen)CrIII.  The synthetic procedure was 

derived from the literature34,35 and is outlined in Figure 8-1. The notation MSN-(salen)CrIII 

and MSN-(salen)CrVO will be used for the two oxidation states of chromium attached to the 

support. Even though the overall charges and the coordination sphere around the chromium 

are probably the same as for the solution species, that information could not be directly 

confirmed, which is why we use this less explicit notation for the supported species. 

MSN-(salen). 1.0 g of aminopropyl-functionalized MSN was activated by heating at 

120 oC under high vacuum overnight.  The activated AMSN was stirred in 20 mL refluxing 

ethanol with 4-tert-butyl-2,6-diformylphenol (1.0 mmol) for 12 hours under N2.  The solid 

was separated by hot filtration and washed with copious amounts of ethanol and dried in air.  

The dried solid was stirred with 1,2-diaminoethane (1.0 mmol) in 20 mL ethanol at reflux for 

another 12 hours, separated by hot filtration and washed with excess ethanol.  Following the 

separations and washing, the solid was stirred with 2-hydroxylbenzaldehyde (1.0 mmol) in 

refluxing ethanol for another 12 hours. After hot filtration and washing by ethanol, the solid 

(SalenMSN) was dried at 90oC under high vacuum overnight.   

MSN-(salen)CrIII. MSN-(salen) (1.1g, including about 0.5 mmol salen ligand) was 

stirred with 1.25 equiv. CrCl2 in 10mL dry THF at room temperature under N2 for 6 hours 

and then stirred in air for another 3h.34,35  The product MSN-(salen)CrIII was filtered, washed 

with water and ethanol, and dried at 90oC under vacuum overnight.   

 

Characterization of MSN-(salen)CrIII 

Powder XRD experiments were performed on a Scintag XDS 2000 diffractometer 

using a Cu Kγ radiation source.  Low angle diffraction with a 2θ range of 1 to 10° was used 

to investigate the long-range order of the materials (d100 = 38.40Å, d110 = 22.6Å, d200 = 

19.30Å, Figure 8-2.  The surface area (SBET = 789.41m2/g) and pore diameter (DBJH = 
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22.40Å) were measured using N2 adsorption/desorption measurements in a Micromeritics 

ASAP 2000 BET surface analyzer system, Figure 8-3.  Data from powder XRD, BET 

isotherms and BJH pore size distribution show that MSN-(salen)CrIII still has the typical 

MSN high surface area, narrow pore size distribution and ordered hexagonal pore structure, 

which were further confirmed by transmission electron microscopy (TEM) image shown in 

Figure 8-4.  TEM results for MSN-(salen)CrIII reveal that the parallel mesoporous channels, 

which are one of the specific features of MSN.  The loadings of salen ligand and Cr-salen 

complex were determined via TGA and EDX respectively. Both measurements indicated that 

approximately 0.5 mmol/g of catalyst was loaded on the surface of MSN.   

Solid-state NMR.  The measurements were performed at 9.4 T and 14.1 T on a 

Chemagnetics Infinity spectrometer and a Varian NMR system 600 spectrometer, equipped 

with 5 mm and 3.2 mm MAS double-tuned probes, respectively.  13C and  29Si chemical shifts 

were all referenced with respect to tetramethylsilane (TMS) at 0 ppm.  The experimental 

conditions are listed below with the following symbols: B0 denotes the static magnetic field, 

Rν the rate of sample rotation , H
RFν  and X

RFν  the magnitude of radio frequency magnetic fields 

applied to 1H and X spins, RDτ  the relaxation delay, CPτ  the cross polarization time, and NS 

the number of scans. 
1H-13C CP/MAS.  For the salen ligand and MSN-(salen):  B0 = 9.4 T; Rν  = 10 kHz; 

H
RFν  during excitation = 50 kHz; H

RFν  during CP = 35 kHz; H
RFν  during TPPM decoupling = 

~42 kHz; C
RFν  = 45 kHz; RDτ  = 2 s; CPτ  = 2 ms; NS = 256 and 8192 for the salen ligand and 

MSN-(salen), respectively.  For MSN-(salen)-CrIII:  B0 = 14.1 T; Rν  = 20 kHz; H
RFν  during 

excitation = 84.7 kHz; H
RFν  during CP = 70 kHz; H

RFν  during TPPM decoupling = 84.7 kHz; 
C
RFν  = 83 kHz; RDτ  = 1 s; CPτ  = 1.5 ms; NS = 34000. 

29Si DP/MAS.  For MSN-(salen):  B0 = 9.4 T; Rν  = 8 kHz; Si
RFν  = 62.5 kHz; H

RFν  

during TPPM decoupling = 35 kHz; RDτ  = 300 s; NS = 245.  For MSN-(Salen)-CrIII:  B0 = 

14.1 T; Rν  = 20 kHz; Si
RFν  = 58.8 kHz; H

RFν  during TPPM decoupling = 6 kHz; RDτ  = 300 s; 

NS = 200. 
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Other reagents.  Triflate salt of the chromium(V) complex, 

[(salen)CrV(O)](CF3SO3), was prepared by oxidation of the Cr(III) precursor36 with 

iodosobenzene according to a literature procedure.2,37  The concentration of (salen)CrV(O)+ in 

aqueous or acetonitrile solutions was determined from the absorbance at 600 nm (ε = 2 × 103 

M-1 cm-1).37  Commercial (Aldrich) N,N,N’,N’-tetramethylbenzidine (TMB) was purified by 

recrystallization from methanol.38  Concentrations of TMB•+ (ε470 = 4 × 104 M-1 cm-1)30 and 

TMB2+ (ε465 = 9 × 104 M-1 cm-1) were determined from the spectral data obtained in this 

work, see later.  

Kinetic samples of MSN-(salen)CrVO were obtained by adding 1 mg of PhIO to a 

suspension of 4.5 mg of MSN-(salen)CrIII in 10 mL of CH3CN, stirring the suspension for 10 

minutes, and allowing it to settle for 1 min.  Each kinetic run required 3 mL of the decant that 

contained significant amounts of the solid (approximately 0.05 mM MSN-(salen)CrIII).  

These kinetic samples also contained some unreacted MSN-(salen)CrIII and some PhIO 

(dissolved and/or suspended).  PhIO is unreactive toward TMB under our conditions, and 

thus caused no direct interference in the MSN-(salen)CrVO/TMB reaction.  The background 

oxidation of MSN-(salen)CrIII that was generated in the rapid MSN-(salen)CrVO/TMB 

stoichiometric reaction did, however, cause a follow-up catalytic oxidation of TMB to take 

place until one of the reagents was exhausted, see later.  In some experiments, additional 

amounts of PhIO were introduced to examine the effect on reaction rates.    

Kinetic studies.  The experimental protocol was similar to that developed earlier in 

our work with supported UO2
2+ which demonstrated38 that methods and techniques utilized in 

homogeneous solutions can be adapted for work with heterogeneous samples to yield reliable 

and reproducible data. Immediately upon transferring the MSN-(salen)CrVO suspension (or 

salen)CrVO+ solution) into a spectrophotometric cell, the reaction was initiated by adding 

TMB, and the absorbance was monitored at the visible absorption maxima of the radical 

cation TMB•+ or the dication, TMB2+.  The precision of the data was lower in the 

heterogeneous work, with an estimated standard deviation for the rates of about 50%.  One 

source of error is associated with the difficulty in obtaining precise and reproducible amounts 

of the suspended particles, and thus MSN-(salen)CrV, in the kinetic samples.  This was 

especially critical when excess Cr(V) was desired.  Also, the presence of unreacted PhIO (see 



www.manaraa.com

 148 

 

above) caused some scattering the overall absorbance changes in the catalytic phase, but the 

kinetic data were reproducible and are considered reliable within the precision stated. 

All the UV-Vis spectral and kinetic data were acquired with a Shimadzu 3101 PC 

instrument.  In-house distilled and ion-exchanged water was further purified by passage 

through a Millipore Milli-Q water purification system.  The fitting of the kinetic data was 

done with the program Kaleidagraph 3.6.  Unless stated otherwise, all the kinetic and spectral 

work with TMB was carried out in the mixed CH3CN/H2O (9:1, v/v) solvent.   

 

Results 
13C and 29Si solid-state nuclear magnetic resonance (SSNMR) experiments were 

performed to provide structural information about the catalyst system under study and to 

determine the degree of functionalization of the MSN with the salen ligand.  The 13C 

SSNMR spectra obtained using 13C{1H} cross-polarization with magic angle spinning 

(CP/MAS) of as-synthesized salen ligand, salen ligand covalently attached to the silica 

surface (MSN-(Salen)) and salen ligand complexed with CrIII covalently attached to the silica 

surface (Si(Salen)CrIII) are shown in Figure 8-5. In all of the spectra, the peak assignments 

are indicated in reference to structures shown in Figure 8-6. The spectrum of salen ligand 

(Figure 8-5a) is consistent with that of salen containing two substituent groups, a carbonyl 

group attached to C(2) and a t-butyl group attached to C(4).  The peak assignments are made 

following the previous reports on salen and μ-oxo-bis(disalicylideneiminatoiron) 

complexes.39-42  The chemical shifts observed in the 13C SSNMR spectrum of MSN-(salen) 

(Figure 8-5b) are primarily from the salen ligand attached to the MSN surface by amine 

linkers, as shown in Figure 8-6b. The covalent nature of the attachment is confirmed by the 

absence of the carbonyl resonance. Also present in spectrum b of Figure 5 are resonances 

from the residual ethoxy groups (underlying the C(9,18) and C(19) peaks),which result from 

washing the MSN-(salen) complex with ethanol during synthesis. The resonances denoted by 

‘*’ in Figure 8-5b are consistent with those observed earlier for unreacted surface-bound 

linkers.31 
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Coordination of metal species with salen-type complexes typically results in 

downfield chemical shifts of the imine, -N-CH2- and C-O carbons, due to the deshielding 

effect from the metal.39-43  Thus, the downfield chemical shifts of the resonances for C(7), 

C(8), and C(11), were observed in the spectrum of Figure 8-5c, whereas the peak 

representing C(9) shifted in the opposite direction. These results are consistent with 

coordination of Cr(III) to salen. It is also important to note that while there are unreacted 

amine linkers present in both MSN-(Salen) and Si(salen)CrIII materials, all salen ligands were 

functionalized with the silica surface and all functionalized salen ligands were coordinated 

with CrIII, as no resonances from free salen ligands or uncoordinated CrIII salen ligands are 

present in the spectra of these materials. This is consistent with the above mentional results 

of TGA and EDX analysis, which yielded equal concentration of salen and Cr on the surface 

of MSN. 

Further confirmation of the covalent attachment of the salen ligand is obtained from 

the 29Si directly polarized (DP) MAS SSNMR spectra of MSN-(Salen) and Si(Salen) 

CrIII(H2O)+ (Figure 8-7). The spectral region between -60 to -75 ppm represents silicon sites 

with covalently bound species, in positions T3 [(≡SiO)3SiR] and T2 [(≡SiO)2SiROH]. The 

resonances in the chemical shift range of -90 to -130 ppm are consistent with those of typical 

Q-sites, representing the framework silica sites Q4 [(≡SiO)4Si] and Q3 [≡SiO)3Si(OH)].  The 

relative concentration of T-sites is determined via integration of the resonances and found to 

be 14 ±2%, in both MSN-(Salen) and Si(Salen) CrIII(H2O)+ materials.  The spectrum of the 

material containing coordinated CrIII (Figure 8-7b) has the same line shape as spectrum α, 

again signifying that coordination of CrIII does not affect the silica surface.  

UV-Vis spectra of TMB, TMB•+, TMB2+ 

The UV-Vis spectrum of TMB in CH3CN/H2O (9:1, v/v) exhibits λmax at 310 nm 

(ε310 = 4.5 × 104 M-1 cm-1), Figure 8, trace a.  In the presence of high acid concentrations (≤ 

0.10 M HClO4) both nitrogens of the amine are protonated.  A sole maximum for TMBH2
2+ 

appears at 250 nm (ε250 = 2.9 × 104 M-1 cm-1).  At intermediate acid concentrations (1.0 mM), 

bands appear at 320 nm, believed to correspond to a combination of the singly and doubly 

protonated TMB, and 250 nm, where only TMBH2
2+ absorbs.  The absorbance at 250 nm was 

used to calculate the ratio [TMBH2
2+]/[TMBH+] = 0.47 at 1.0 mM HClO4, and to obtain the 
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molar absorptivity of TMBH+ at 320 nm, ε320 = 3 × 104 M-1 cm-1.  The observed species 

distribution at pH 3 leads to an apparent pKa1 of 2.7 in this solvent medium, close to the data 

reported in 1:1 CH3OH/H2O (pKa1 = 3.1, pKa2 = 4.0),44 and, as expected, much smaller than 

in pure acetonitrile (where pKa1 = 8.3, pKa2 = 10.3).27 

The spectra of TMB•+ and TMB2+ were obtained by controlled oxidation of TMB 

with CuII in the absence of added acid.  The results of spectrophotometric titrations are 

shown in Figure 8-9.  At low [Cu2+]/[TMB] ratios, the product exhibited a broad band around 

800 nm, and a triplet-like feature with a maximum at 470 nm that is characteristic for 

TMB•+.19,24,30  As the amount of Cu2+ increased past one equivalent, the 800 nm absorbance 

decreased, and the 470-nm maximum shifted to 465 nm and lost most of the triplet 

appearance.  The titration plot at 470 nm, where both products absorb, is shown as inset a in 

Figure 9-9.   

The plot of the absorbance at 520 nm against the ratio [Cu2+]/[TMB] shows even 

more clearly the successive generation of two products.  The first oxidizing equivalent 

produces TMB•+ which is transparent at this wavelength.  The addition of one more 

equivalent of copper converts TMB•+ to the absorbing TMB2+.  The chemistry of the two 

steps, with additional support for it described below, is shown in eq 7 and 8.   

 Cu2+ + TMB → Cu+ + TMB•+   (7) 

 Cu2+ + TMB•+ → Cu+ + TMB2+   (8) 

From the 470-nm absorbance measured after the addition of one equivalent of Cu2+, 

we obtained the molar absorptivity of TMB•+, ε470 = 4 ×104 M-1 cm-1, in good agreement with 

some literature data30, but larger than others.27  The molar absorptivity of TMB2+ at its 465 

nm maximum was calculated to be 9.0 × 104 M-1 cm-1, close to the reported data.27 

Dramatic spectral changes took place upon the addition of acid, as shown in Figure 8-

10.  First, TMB•+ (spectrum b) was generated from TMB (0.017 mM, spectrum a) and a 

slight excess of Cu2+ (0.019 mM) in the absence of acid.  Upon addition of enough 3 M 

HClO4 to bring the acidity of the solution to 0.10 M, the spectrum of TMB•+ disappeared and 

was replaced with those of the doubly oxidized species (TMB2+) and doubly protonated 

reduced form, TMBH2
2+.  Clearly, the acid caused the radical to disproportionate as in eq 9.  

The two products were formed in quantitative and equimolar amounts, as calculated from the 
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molar absorptivities determined above and summarized in Table 8-1.  The reaction is 

reversible, so that the addition of solid NaHCO3 to acidic mixtures of TMB2+ and TMBH2
2+ 

regenerated the radical TMB•+.  The identical spectra obtained for TMB2+ under neutral and 

strongly acidic conditions strongly argue that no protonation took place at high [H+].  Thus, 

the spectral changes accompanying reactions of TMB2+ and TMB•+ under our conditions are 

believed to be associated with redox chemistry alone.   

 2TMB•+ ⎯⎯ ⎯← ⎯⎯ →⎯
+

 -OH

H
    TMBH2

2+ + TMB2+    (9)  

TMB/(salen)CrVO+ reaction in solution 

In these experiments, TMB (0.06-0.08 mM) was used in excess over the chromium 

complex (0.003-0.02 mM).  The reaction was instantaneous on the time scale of conventional 

spectrophotometry (completion in ≤ 5 seconds), and generated different products depending 

on the concentration of H+.  In every case, the observations were identical regardless of 

whether the solution of (salen)CrVO+ was prepared by dissolving the pure, independently 

synthesized material, or by in situ oxidation of Cr(III) with PhIO.   

In the absence of added H+, TMB•+ was produced according to the 2:1 stoichiometry 

of eq 10.  Under identical conditions, except that the solvent was acidified to 0.10 M HClO4, 

the stoichiometry changed to 1:1, and the product to doubly oxidized amine, eq 11.  These 

results are displayed in Figure 8-11.  

(salen)CrVO+ + 2TMB (+ 2 H+) → (salen)CrIII(H2O)+ + 2TMB•+  (10) 

(salen)CrVO+ + TMB (+ 2 H+) → (salen)CrIII(H2O)+ + TMB2+   (11) 

TMB/MSN-(salen)CrVO – heterogeneous reaction  

In 0.10 M HClO4.  The UV-Vis spectrum of MSN-(salen)CrIII in CH3CN exhibits a 

broad band at 455 nm, significantly red-shifted from the λmax 420 nm in acetonitrile solution 

of (salen)CrIII.2  Since the coordination of chromium to salen has been unambigously 

confirmed by solid state NMR, the shift must be the result of a combination of factors and 

interactions (polar, hydrogen bonding) with the support.   

After stirring the suspension with PhIO for 10 minutes, the 455-band was diminished 

but still present, as shown in Figure 8-11, indicating that only a fraction of CrIII was 
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converted to CrV.  No new features were observed around 600 nm, where MSN-(salen)CrVO 

is expected to absorb, in analogy with the solution species.  The reason, we believe, are the 

small concentrations of (salen)CrVO produced, and some loss in signal quality caused by 

light scattering and by the fact that the 600-nm band is quite broad even in solution.  Despite 

the lack of direct spectral evidence for MSN-(salen)CrVO, there is no doubt that the oxidized 

form was produced as shown by rapid formation (in mixing time) of TMB•+ when limiting 

amounts of TMB were added, eq 12.  This behavior is qualitatively the same as that 

described above for the solution species under analogous conditions.   

MSN-(salen)CrVO + 2TMB  →  2TMB•+ + MSN-(salen)CrIII     fast         (12) 

With TMB in excess or comparable to MSN-(salen)CrVO, the radical TMB•+ was 

again formed, but now in two stages, as shown in Figure 8-12. 

We attribute the fast initial absorbance jump to the reaction of the preformed Cr(V), 

and the slower step to the catalytic reaction, presumed to have the formation of MSN-

(salen)CrVO from PhIO and MSN-(salen)CrIII, eq 13, as the rate-limiting step.  The source of 

MSN-(salen)CrIII(H2O) is either the starting material that had not been oxidized to MSN-

(salen)CrVO during the 10-min oxidation process, see Experimental, or that regenerated in 

reaction 12.   

MSN-(salen)CrIII + PhIO  →  MSN-(salen)CrVO + PhI    (13) 

The catalytic aspect of the slower stage was confirmed in an experiment starting with 

a much smaller amount of MSN-(salen)CrIII (0.005 mM) and excess PhIO (0.02 mM), Figure 

8-13.  The reaction with excess TMB (0.03 mM) was monitored at 500 nm where the product 

has a molar absorptivity of 2.9 ×104 M-1 cm-1.  Under these conditions, all of the oxidizing 

equivalents from PhIO were utilized to generate 0.02 mM TMB2+, again in a kinetically clean 

but slower process, as expected for the conditions chosen.   

In another set of experiments, the reaction was conducted side by side in solution and 

with the supported species.  The results are displayed in Figure 8-15.  Except for the ten 

times lower concentration of (salen)Cr(III) (0.005 mM) in solution, all the other conditions 

and concentrations are identical and given in the caption. 

From the initial absorbance jump obtained for the supported material, trace a in 

Figure 8-14, the concentration of the initially present (salen)CrV was calculated as ~0.007 
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mM.  The follow-up catalytic reaction accomplishes approximately two more cycles before 

all of the TMB is oxidized.   

The lower concentration of the catalyst in the homogeneous solution resulted in a 

much smaller initial concentration of (salen)CrVO+ (0.001 mM), requiring a larger number of 

cycles and longer times in the catalytic phase to complete the reaction, trace b in Figure 8-14.  

Overall, however, the times required for the completion of the two reactions were not greatly 

different.  In fact, the initial rates in the catalytic phase, displayed in the inset to Figure 8-14, 

are quite similar, leading us to conclude that homogeneous catalysis is only slightly more 

efficient.  With the estimated concentration of the active catalyst only about seven times 

larger under heterogeneous conditions, the efficacy of catalysis is certainly within the same 

order of magnitude as that in homogeneous solution.  

In the absence of added acid. Unlike the homogeneous reaction, which was 

instantaneous under all of our conditions, the heterogeneous reaction became visibly slower 

when no acid was added.  This is illustrated in Figure 8-15 where trace a denotes the reaction 

in 0.10 M HClO4, and trace b in the absence of added H+.  In both experiments, (salen)CrVO 

was generated from 0.047 mM MSN-(salen)CrIII and PhIO in the absence of acid, as 

described in Experimental, followed by the addition of HClO4 and TMB (in that order) in 

experiment a, or TMB only in experiment b.  All the concentrations were identical in the two 

experiments, but the absorbance changes differ because different products are formed at the 

two acidities used, as already discussed and illustrated in Figure 8-12  Reaction a is 

decidedly faster than reaction b.  

To determine whether the rate reduction in the absence of acid was caused by slower 

chemistry or by diminished amounts of the catalyst in the Cr(V) form, we interrupted 

experiment b (no HClO4) by sudden addition of HClO4, final concentration 0.10 M.  As 

shown in trace c in Figure 8-15, the addition of acid failed to restore trace a, and instead 

caused only a small absorbance jump, showing that the concentration of MSN-(salen)CrV 

was smaller than in a.  The subsequent catalytic step was also slower, which is now easily 

explained by the lower concentration of the active form of the catalyst.  

The rates and product yields in the absence of added HClO4 were examined as a 

function of concentrations/amounts within the experimentally allowed precision for all the 



www.manaraa.com

 154 

 

species involved. Table 2 summarizes the data.  The rates responded to changes in all three 

concentrations, i. e. MSN-(salen)CrIII, PhIO, and TMB.  As was already clear from the data 

in Figure 8-15, no single kinetic step appears to be rate-controlling.  Rather, a combination of 

the generation of the active catalyst (eq 13) and oxidation of TMB (eq 12) contribute to the 

observed rate.  This results in an apparent third order reaction, eq 14, with k14 = (7 ± 4) × 106 

M-2 s-1.   

Rate = k14 [Catalyst][PhIO][TMB]    (14) 

 

Discussions 

We placed several requirements on the supported catalyst for this study.  The 

complex had to be covalently bound to the silica surface to prevent leaching and interference 

from homogeneous chemistry.  The surface sites containing the catalyst had to be equivalent 

chemically and structurally to allow equal access of reactants and departure of products.  

Ideally, the density of catalytic sites would be large enough to allow the chemistry to proceed 

rapidly, but low enough to avoid diffusional limitations, secondary chemistry, and 

nonbonding interactions between supported catalyst molecules.   

Solid state NMR data and reactivity results show that the catalyst has indeed fulfilled 

these requirements.  The covalent attachment of the salen ligand to the MSN surface 

(containing amine linkers), and coordination of metal to all the available salen sites were 

confirmed by NMR, as shown in the Result Section.  The good quality of kinetic traces, 

especially under conditions (0.10 M HClO4) having a well-defined rate determining step, 

from Figures 8-12 to Figure 8-14, strongly argues that the sought uniformity of catalytic sites 

has been achieved.   

In acidic solutions, the results obtained with MSN-(salen)CrVO are strikingly similar 

to those obtained in homogeneous solution under comparable conditions.  In both cases, the 

oxidation of TMB with available Cr(V) was complete in mixing time.  This was followed by 

a slower, catalytic phase that generated more product in a set of kinetically unresolved steps 

involving TMB, PhIO, and either suspended (Si(salen)CrIII) or dissolved (salen)Cr(H2O)+) 

chromium complex.  The similarity in behavior and reaction rates of the two systems in 
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Figure 8-14 shows the supported species to have the reactivity approaching that of the 

solution species to within less than an order of magnitude.   

Qualitatively similar observations have been made recently for the oxidation of 

benzyl alcohol with H2O2 catalyzed by MSN-(salen)CrIII.  It was shown that both the 

conversion and selectivity to aldehyde increased relative to those obtained with the 

homogeneous (salen)CrIII.47  In that work, the attachment to the support was achieved 

through a ligand coordinated to the chromium, unlike in our case where a covalent C-Si bond 

has been established between the salen ligand and silica support.  In several other reported 

cases, the activity of (salen)CrIII on various supports also appeared acceptably close or better 

than the solution species in reactions such as CO2 addition to epoxides,48, asymmetric ring 

opening49, enantioselective epoxidation50, and others.50  These studies provided useful and 

important phenomenological observations, although detailed kinetic and mechanistic data 

have not been obtained.   

In the present work with the supported material in the absence of acid, a rate constant 

k = 7.4 × 106 M-2 s_1 was determined over a moderate range of concentrations for the 

catalytic oxidation of TMB.  We consider this value only an approximation that may or may 

not be valid outside of the range examined.  None the less, having a rate law and a rate 

constant is extremely useful as it provides a quantitative standard against which one can 

gauge changes in catalyst performance.   

One such change was observed when HClO4 was added to the MSN-(salen)CrIII-

PhIO-TMB reaction.  As shown in Figures 8-12, 8-13 and 8-14, the rates increased, and 

kinetic traces adopted the zero-order appearance expected for a catalytic reaction limited by 

the generation of the active form of the catalyst.  The source of the acid dependence was 

traced to the greater concentration of the catalyst when HClO4 was present.  The reason for 

higher Cr(V) concentrations has not been established, but the results suggest that a greater 

concentration of H+ at or close to the support surface may facilitate the approach of PhIO by 

hydrogen bonding or polar interactions, and promote the oxidation of Cr(III) to Cr(V).   

A different effect of acid in this work is related to the reductant itself, and, in a more 

general sense, to the pH-induced changes in thermodynamics.  Such phenomena play a role 

in the general area of energy storage and generation of kinetic (as opposed to thermodynamic 
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products).  In the present work, the decrease in pH changes products from the radical cation 

to a mixture of reduced and doubly oxidized species.  The relevant equilibria are shown in eq 

15 and 16.   

2TMB•+ + 2H+ ⎯⎯←⎯→⎯  TMBH2
2+ + TMB2+  log K = +3.6   (15) 

2TMB•+ ⎯⎯←⎯→⎯  TMB + TMB2+   log K = -3.4   (16) 

The equilibrium constants K15 and K16 can be calculated from the pKa for TMBH2
2+ 

(3.1) and TMBH+ (4.0) reported in 1:1 MeOH/H2O,44, and the reduction potentials for the 

singly and doubly oxidized TMB in acetonitrile45.  The values obtained are log K = 3.6 for 

the disproportionation of TMB•+ according to eq 15, and -3.445 according to eq 16.  The 

difference of about seven orders of magnitude in the equilibrium constant denotes great 

stability of the doubly oxidized form in acidic solutions, and provides thermodynamic 

explanation for the dramatic change in products of TMB oxidation with changes in [H+].   

Similar calculations for the closely related TMPD (E1 = 0.12 V vs SCE for 

TMPD•+/TMPD,51 and E2 = 0.72 V for TMPD2+/TMPD•+, i. e. 0.6 V greater than E1
52) 

yielded log K = -10 for disproportionation of TMPD•+ in the absence of added acid, and -1.7 

in the equivalent of eq 14 to yield TMPD and TMPDH2
2+.25  Clearly, even in acidic solutions 

the disproportionation is unfavorable, and the radical TMPD•+ is the expected and observed25 

product.  In addition, the 1-e cross-reaction to give the radical and (salen)CrIVO is downhill, 

at least in acetonitrile, based on E1/2 = 0.47 V against SCE for (salen)CrVO+/(salen)CrIVO 

couple.2   

This analysis makes the observed25 single-step 2-e oxidation of TMPDeven more 

surprising, but the (unknown) 2-e reduction potential for (salen)CrVO+ is clearly large enough 

to accomplish the reaction. Upon addition of one or more equivalents of TMPD, the rapid 

comproportionation step generates stoichiometric amounts of TMPD•+, in agreement with the 

thermodynamic predictions. 
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The mechanism of the TMB oxidation in either phase has not been established, but 

we favor a route similar to that used by TMPD in view of the fact that the 2-e reaction is 

thermodynamically much more favorable for TMB than for TMPD.  

Conclusions 

Chromium(III) salen-catalyzed oxidation of tetramethylbenzidine (TMB) with 

iodosobenzene was selected as a model reaction for a comparative study of catalytic activity 

under homogeneous and heterogeneous conditions. The kinetics of the heterogeneous 

reaction are well-behaved, as would be expected for a material having an easily accessible, 

well-defined chemical species, i.e.(salen)CrIII, covalently attached inside the mesopore. 

Solid-state NMR data and well-behaved kinetics strongly argue for the chemical and 

structural uniformity of catalytic sites in the heterogeneous catalyst. The catalytic rates 

approach those observed in homogeneous solutions of (salen)Cr(H2O)+ under comparable 

conditions. Reaction products are pH-dependent and change from the radical cation TMPD•+ 

in neutral solutions to the doubly oxidized TMPD2+ at pH=1. 
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Figure 8-1.  Synthetic procedure for the preparation of MSN-(salen) and 

MSN-(salen)CrIII. 
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Figure 8-2.  Powder XRD pattern of MSN-(salen)CrIII. 
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Figure 8-3.  BET isotherms (above) and BJH pore size distributions (bottom) of 

MSN-(salen)CrIII. 
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Figure 8-4.  TEM image of CrIIISalenMSN. 
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Figure 8-5.  13C CP/MAS solid-state NMR spectra of: (a) as-synthesized salen 

ligand, (b) salen ligand covalently attached to the surface of MSN (MSN-(Salen) 

and (c) salen ligand complexed with CrIII and covalently attached to the surface of 

MSN (Si(salen)CrIII.  The asterisks denote resonances due to unreacted amine 

linkers. 
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to the surface of MSN (MSN-(Salen) and (b) salen ligand complexed with CrIII and 

covalently attached to the surface of MSN (Si(Salen)CrIII(H2O)+). 

Figure 8-8.  Uv-Vis spectra of TMB (0.022 mM) in CH3CN/H2O (9:1) with no 

acid added (a), 1.0 mM HClO4 added (b), and 0.10 M HClO4 added (c). 
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Figure 8-9.  Titration of TMB (1.7 × 10-5 M) with Cu(ClO4)2. Insets: plots of 

absorbance vs. [Cu2+]/[TMB]at 470 nm (a) and 520 nm (b). 
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Figure 8-10.  UV-vis spectra of: (a) TMB (0.017 mM) in CH3CN/H2O (9:1), 

(b) TMB•+ obtained by addition of 0.019 mM Cu(ClO4)2 to a; and (c) mixture 

of TMB2+ and TMBH2
2+ generated by acidifying solution b to 0.10 M HClO4.  
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Table 8-1. Summary of Spectral, pKa, and Electrochemical Data for TMB 

Species λmax/nm ε/104 M-1 cm-1 E/V (reference) Source 

TMB 310 4.5   

TMBH+ 320 ~3.0   

TMBH2
2+ 250 2.9   

TMB•+ a, b 470 4.0 0.10 (Ag/AgNO3) 

0.115 (Ag/Ag+) 

0.43 (SCE) 

45 
27 
46 

TMB2+ 465 9.0 0.30 (Ag/AgNO3) 

0.305 (Ag/Ag+) 

45 
27 

a Reduction potentials in acetonitrile.  b In water 

 

 

Figure 8-11.  UV-vis spectrum of MSN-(salen)CrIII in CH3CN (a), and after oxidation 

with PhIO (b). 
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Figure 8-12. Kinetic traces at 470 nm for the reaction of MSN-(salen)CrIII (0.05 mM) 

with PhIO (0.05 mM) in the presence of TMB (0.017 mM) in CH3CN/H2O (9:1) in 

0.10 M HClO4. 
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Figure 8-13. Kinetic traces at 500 nm for the reaction of MSN-(salen)CrIII (0.005 

mM) with PhIO (0.02 mM) in the presence of TMB (0.03 mM) in CH3CN/H2O (9:1) 

in 0.10 M HClO4. ε500 (ΤΜΒ2+) = 2.9 ×104 M-1 cm-1.   
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Figure 8-14.  Kinetic traces at 470 nm for the reaction of MSN-(salen)CrIII

(0.05 mM, trace a) and (salen)CrIII (0.005 mM, trace b) with PhIO (0.04 mM) 

in the presence of TMB (0.02 mM in trace a, 0.022 in trace b) in CH3CN/H2O 

(9:1) in 0.10 M HClO4.  Axis labels in the inset are the same as in main figure. 
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Figure 8-15. Kinetic traces at 470 nm for the reaction of MSN-(salen)CrIII

(0.047 mM) with PhIO (0.2 mM) in the presence of TMB (0.015 mM) in 

CH3CN/H2O (9:1) in 0.10 M HClO4 (trace a), in the absence of added acid (trace 

b), and upon interruption of experiment b by addition of HClO4 (trace c).  The 

starting absorbance for experiments a and c is identical (0.8). Trace b was 

displaced downward for better visibility.  
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Table 2.  Summary of Kinetic Data for the Oxidation of TMB with PhIO Catalyzed by 

MSN-(salen)CrIII a 

[PhIO] / mM [TMB] / mM vi / M s-1 b k / M-2 s-1  

0.04 0.008 – 0.034 c 1.4 × 107 d 

0.04 0.037 3.3 × 10-7 4.7 × 106 

0.04 0.073 6.2 × 10-7 4.5 × 106 

0.04 0.080 2.4 × 10-6 1.4 × 107 

0.04 0.130 2.1 × 10-6 7.5 × 106 

0.2 0.005 1.7 × 10-7 3.6 × 106 

0.2 0.013 4.8 × 10-7 3.9 × 106 

   (7.4 ± 4.5) × 106 
a[MSN-(salen)CrIII] = 0.05 mM.  b Initial rate.  c In the range (3.3 – 8.8 )  × 10-7 M s-1, 

depending on the concentrations.  d Average of six determinations in the denoted range.   
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ABSTRACT 

Carboxylic acids, such as acetic, propionic, n-butyric, and lactic acids, from biomass 

fermentation have attracted much attention recently as promising chemical feedstock for 

various applications. The feasibility of this bioconversion depends on the separation of 

carboxylic acids from the fermentation liquor. To selectively adsorb carboxylic acids, we 

synthesized an aminopropyl-functionalized mesoporous silica nanoparticle (MSN) material 

with the MCM-41 type, parallel channel porous structure via a co-condensation method that 

we previously developed and reported. The adsorption isotherms were analyzed with an 

extended Langmuir model using an overloading term. The highest acid adsorption capacity 

deduced was 3.38 mol/kg for 1:1 complexation at an amine density of 3.14 mol N kg-1. 

Positive isosteric heat showed the reaction was exothermic and favored at low temperature. 

We demonstrated that the adsorption reaction between carboxylic acids and MSN was pH-

dependent. Desorption/regeneration by increasing pH to 10.5 was completed within 1 min, 
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and the regenerated MSN showed adsorption capacity equivalent to the original. MSN had a 

high selectivity for carboxylic acid over ethanol, glucose, and protein. The pseudo-second-

order rate constant for acetic acid adsorption on MSN was 0.41 kg/mol.min, significantly 

higher than that of an anion exchange resin (0.14 kg/mol.min) and activated carbon (0.06 

kg/mol.min). We envision that the MSN material could serve as an efficient adsorbent for 

selective sequestration of carboxylic acids from anaerobic digestion of biomass for many 

different applications. 

 

Introduction 

The conversion of waste biomass into useful chemicals is an environmentally-sound, 

sustainable solution that can decrease fossil fuel dependency, reduce production of 

greenhouse gases and pollution in general.1 A mixture of low-molecular weight carboxylic 

acids, such as acetic acid, propionic acid, butyric acid, and lactic acid, can be easily produced 

from various complex organic biomass by an indigenous mixed microbial community.2, 3 The 

production of a mixture of carboxylic acids does not require a sterile environment, expensive 

tanks or purified enzymes. Efficient separation of carboxylic acids from fermented liquor 

would allow the thermochemical transformation of the acids to mixed alcohols and/or other 

liquid fuels.4 Fermentation and extraction methods for selective organic acids with high 

commercial values from biomass also attracted much research attention recently.1, 5 

Apparently, the economic feasibility of converting waste biomass to valuable 

chemicals is directly dependent on finding efficient and low-cost sequestration methods for 

the targeted, soluble products from the bulk solution. The conventional precipitation, 

adsorption, solvent extraction, pertraction, ion-exchange and electrodialysis have all been 

evaluated for the separation and purification of organic acids from fermentation mixtures.5 

Unfortunately, the high operational and/or capital costs of these methods are hindering the 

harvesting of organic acids from the fermentation of biomass in large scale.1, 6 

The discovery of surfactant micelle-templated synthesis of mesoporous silica 

materials such as MCM-41/48, SBA-15, MSU-n, KIT-1, and FSM-16 enabled the use of 



www.manaraa.com

 172 

 

these structurally stable mesoporous solid materials with high surface areas (> 700 m2/g) for 

catalysis, sensors, delivery, and adsorbents.7 For example, amine-functionalized mesoporous 

silicas have been shown to adsorb heavy metals, pyruvic, and succinic acids from aqueous 

solutions.8-11 In these studies, the performance of these amine-functionalized mesoporous 

silica adsorbents was shown to be dependent on the chemical accessibility and surface 

affinity determined by the structural and mass-transport properties of the materials, as well as 

the amine density.8-11 

While the results in these recent literature reports are exciting, the question on how 

the selectivity and efficiency of using amine-functionalized mesoporous silicas as adsorbents 

for the sequestration of short-chain carboxylic acids, such as acetic, propionic, and n-butyric 

acids, would be affected in the presence of common chemicals, such as ethanol, glucose, and 

glutamate, in fermentation remains unanswered. Herein, we report on the design of a series 

of MCM-41 type amine-functionalized mesoporous silica nanoparticle (MSN) materials for 

the selective sequestration of the aforementioned carboxylic acids. We synthesized the MSN 

materials via a co-condensation method that we previously developed and reported.7, 12, 13 As 

demonstrated in the following sections, the degree of amine-functionalization in these MSN 

particles is tunable without creating a non-homogenous surface coverage or distorting the 

porous structure at high-functional-group density. We investigated the structure and 

carboxylic acids adsorption capacity of MSN with different amine densities ranging from 

0.84 to 3.65 mol N kg-1. Based on the adsorption isotherms and kinetics at different pH and 

temperatures, and the results of competitive adsorption study with several common 

coexisting chemicals, such as amino acids, ethanol, and glucose, in fermentation, we found 

that MSN exhibited a superior adsorption efficiency and selectivity in comparison with 

several other conventional adsorbents, such as anion exchange resins and activated carbon. 

Results and Discussions 

MSN was synthesized via a sodium hydroxide-catalyzed co-condensation reaction of 

tetraethoxysilane (TEOS) with 3-aminopropyltrimethoxysilane (APTMS) in the presence of 

cetyltrimethylammonium bromide (CTAB) as the structure-directing template. Pure MSN 

without any organic functional group and five MSN materials with different amine densities 
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(0.84, 2.35, 3.14, 3.49, and 3.65 mol N kg-1 basing on elemental analysis) were made 

according reference.7, 12, 13 These materials were characterized by N2 adsorption/desorption 

(Figure 9-1), powder X-ray diffraction (XRD) (Figure S9-1) and transmission electron 

microscope (TEM) (Figure 9-2). The degree of amine functionalization and the structural 

properties, i.e., surface area, pore size, and pore volume of MSN materials are summarized in 

Table 1. As the loading of amine functional group increased from 0.0 to 3.7 mol N kg-1 

(determined by the elemental analysis), the surface areas and pore volumes of MSN materials 

decreased from 1043 to 330 m2/g, respectively. While the total surface area decreased 

significantly, all MSN samples exhibited the type IV nitrogen sorption isotherm and narrow 

BJH pore size distribution (Figure 9-1), indicating that these materials have the MCM-41 

type, highly ordered 2-dimensional mesoporous structure even with the high amine 

density.14-16 Transmission electron microscopy (TEM) (Figure 9-2) and the powder X-ray 

diffraction (XRD) analyses (Figure S9-1) further confirmed the highly-ordered mesoporous 

channel structure of these MSN materials. The mesoporous channels of these materials are 

indeed accessible to the targeted carboxylic acids in bulk solution while encountering little or 

no diffusion limitations.  

With acetic acid as the first targeted organic acid, the maximum adsorption capacities 

of these MSN materials for acid at pH 3.5 to 4.0 (Table 9-1) and their corresponding 

adsorption isotherms (Figure S9-2) showed that the adsorption capacity increases 

proportionally with the degree of amine functionalization. The results suggested that the 

aminopropyl functional groups were converted to ammoniums under this acidic condition, 

which could serve as primary adsorption sites for acetic acid. The facile ion-exchange 

process between the surface bound ammonium functional groups and acetic acid molecules 

in aqueous solution under pH < 4.75 is described in Eq. (1).  In contrast, the protonated 

silicate (silanol) of MSN materials could only weakly interact with acetic acid under the 

same condition as outlined in Eq. (2) and could only act as the secondary adsorption sites.17  

{-NH3
+Cl-} + HOAc → {-NH3

+OAc-} + HCl     (1) 

{-Si-OH} + HOAc → {-Si-OH⋅HOAc}      (2) 

Furthermore, the experimental data resembled the typical Langmuir-type isotherms 

with single linear increases and saturation limits. However, the calculated maximum 
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adsorption capacities using the Langmuir model were larger than the actual amine densities 

of MSN (Table S9-1) due to the adsorption data at high equilibrium acid concentrations. 

Even assuming the silanols in the amine-functionalized MSN have the same adsorption 

capacity of non-functionalized MSN (0.33 mol HOAc kg-1), the adsorption capacities are still 

higher, implying that more than one acetic acid molecule could be adsorbed per surface site 

on MSN at high acetic acid load. Empirical approaches, such as the Freundlich and Sips 

equations, have been used to deal with the “overloading” phenomena.18, 19 However, the 

semi-empirical equations developed for adsorbent with complex pore and surface structure 

like activated carbon might not be appropriate to MSN, where the mesoporous structure are 

highly ordered in two dimensions. Instead, we used an extended Langmuir isotherm model as 

shown in Eq. (3), which is based on an additional 2:1 adsorption by hydrogen bonding of a 

second acetic acid to the carbonyl oxygen of the first acetic acid bound to the adsorbent:10 
2

Max 1 EQ 2 EQ
EQ 2

1 EQ 2 EQ

Q (b C 2b C
Q =

1+b C b C
+

+

)
       (3) 

where QEQ (mol L-1) is the equilibrium amount of carboxylic acid adsorbed on the 

adsorbent, QMax (mol kg-1) is the maximum adsorption capacity for 1:1 complexation, CEQ 

(mol L-1) is the equilibrium concentration of unionized carboxylic acid, b1 is the apparent 

equilibrium constant (L mol-1) for 1:1 complexation and b2 is the apparent equilibrium 

constant for 2:1 adsorption (overloading) (L2 mol-2). As shown in Table 9-1 and 

supplementary material (Figure S9-2), the extended Langmuir isotherm model explained the 

data with reasonable QEQ values. Acid adsorption capacity increased with the amine densities 

up to 3.14 mol N kg-1. The calculated maximum adsorption capacity for 1:1 complexation 

was 3.38 mol HOAc kg-1. At higher amine densities, the acid adsorption did not increase. 

Table 9-1 shows that the maximum capacity per surface area increased as the amine density 

became larger. This result suggested that the decrease of surface area would limit the 

efficiency. However, the ratios of adsorbed acetic acid to the amount of aminopropyl group 

on MSN remain no less than 0.83 mol HOAc per mol of amino group, because the 

accessibility of acid molecules to the surface ammonium sites was not significantly hindered. 

As discussed in the previous section, all MSN materials are with the same mesoporous 

structure regardless the degree of aminopropyl-functionalization. The apparent equilibrium 
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constants, b1 and b2, indicated how strong the adsorbate molecule is attached onto the 

primary and the secondary adsorption sites, respectively.18 As the adsorption sites were the 

same at the amine-MSN, the values of the constants were little influenced by the amine 

density. It should be noted that the overloading term, b2CEQ
2 was negligible at a low 

equilibrium acid concentration. For acetic acid adsorption onto MSN with 3.14 mol N kg-1, 

the difference between the two models was <6% at the equilibrium unionized acid 

concentration (<100 mM (6 g L-1)) as shown in Supporting Information (Figure S9-3). 

Figure 9-3 depicts that isotherms of propionic, n-butyric, and lactic acids were not 

significantly different from that of acetic acid, indicating the carboxylic group would be the 

active functionality that is responsible for the adsorption to MSN surfaces. As acetic, 

propionic, n-butyric, and lactic acids are the main carboxylic acids in fermentation of waste 

biomass, this result showed that the adsorption data obtained using acetic acid could be 

representative for the carboxylic acid from the fermentation of waste biomass.2, 3 

As we knew, isosteric heat of adsorption is one of the key thermodynamic variables 

for the design of an adsorption process.20 Acid adsorption on our MSN materials was found 

to be favored at low temperature (Figure S9-5). The isosteric heat could be calculated using 

Clausius-Clapeyron equation as Eq (4). 

  

       (4) 

 

where (-ΔHads) is the isosteric heat of adsorption (kJ mol-1), R is the ideal gas constant (8.314 

J mol-1 K-1), and T is the thermodynamic temperature (K). Figure 9-4 shows plots of the 

isosteric heats of adsorption with adsorbed amounts of acetic acid. The isosteric heat values 

varied from 36.9 to 15.8 kJ mol-1 with adsorbed acetic acid amounts from 0.5 to 3.5 mol 

HOAc kg-1. The positive isosteric heats (negative enthalpy) indicate that the adsorption 

reaction of acetic acid on MSN was exothermic. The heat values decreased with the adsorbed 

amount of acetic acid confirming that there were finite specific surface adsorption sites for 

acetic acid, which were the surface-bound ammonium groups in this case.18 

−ΔHads = −R
d(lnCEQ)

d(1/T) QEQ



www.manaraa.com

 176 

 

Since the concentration of the unionized carboxylic acid molecules is a function of 

pH, adsorption would indeed depend on pH. At low carboxylic acid loading where b2CEq is 

negligible, the effects of pH on adsorption would be predicted using Eq. (5): 
Eq, T int EQ
pH-pK pH-pKa a

Eq, T int EQ
pH-pKpH-pK aa

C C rQ
Max 1 Max 11+10 1+10

EQ C C rQ
11 1+101+10

Q b Q b
Q =

1+b1+b

−

−=       (5) 

where CEQ, T (mol L-1) is the equilibrium concentration of total (unionized + ionized) 

carboxylic acid, pKa is carboxylic acid dissociation constant, Cint (mol L-1) is the initial 

concentration of carboxylic acid, and r is the adsorbent-to-solution ratio (kg L-1). The 

prediction was well agreed with the experimental data at the initial acid concentration of 50 

mM (R2 = 0.9533, Figure S4). 

Figure 9-4 illustrates that more than 98% of adsorbed acetic acid desorbed from MSN 

within 1 min upon adjusting pH to 10.5.  The desorbed MSN samples could be reused for 

carboxylic acids. Interestingly, these recycled MSN samples showed adsorption capacity as 

high (> 98%) as those of the freshly prepared materials. The results further confirmed that the 

regeneration of MSN and the extraction of adsorbed organic acid could indeed be achieved 

by a simple pH change. 

We note that, in addition to the ionization equilibrium of acetic acid at pH between 6-

10, the silanol groups of MSN would also be deprotonated yielding the anionic silicates (Si-

O-) on the mesopore surface. The surface-bound ammonium groups would likely be the only 

adsorption sites for the acetate (OAc-) anions (Eq. (6)), given the fact that the silicate sites 

would not be attractive to acetate because of the charge repulsion (Eq. (7)).  

{-NH3
+Cl-} + OAc- → {-NH3

+OAc -} + Cl-      (6) 

{-Si-O-} + OAc -
 → No reaction                  (7) 

These interactions could explain the rapid decrease in adsorption capacity (QEQ) when 

pH increased from 4 to 7.5 as depicted in Figure S9-4, as the adsorption between these 

species would be governed by the equilibrium of the ionization of acetic acid. 

The suppression on carboxylic acid adsorption by co-existing chemicals in the bulk 

solution is another important factor in evaluating the applicability of adsorbents. The effects 

of common organic and inorganic chemicals in fermentation were investigated at 10-100 

times higher than the normal concentrations as depicted in Figure 5. Interestingly, the 
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aminopropyl-functionalized MSN materials have very high selectivity for carboxylic acids. 

The sequestration was unaffected by the presence of other organic chemicals. Ethanol (at the 

initial concentration ≤133.3 mM or 6.1 g L-1) and glucose (at the initial concentration ≤33.3 

mM or 24.0 g L-1) did not affect the adsorption of acetic acid. Glutamate, an amino acid with 

two carboxylic groups, slightly decreased the adsorption of acetic acid only at a very high 

initial concentration ≥40 mM (5.9 g L-1 or 560 mg TKN L-1). At 54.4 mM (8.0 g L-1, 761 mg 

TKN L-1), near the maximum solubility of the amino acid (0.1 g g-1 H2O), the adsorption 

capacity remained high (84%) in comparison with the control. The carboxylic group in the 

amino acid would be adsorbed onto the amine group of MSN. As glutamate is one of only 

two amino acids among 20 having two carboxylic groups, the suppression effect of 

protein/amino acids in usual fermentation broth would be much less than that of glutamate 

that we had tested here. The inorganic anions chloride (at the initial concentration ≥15 mM or 

533 mg L-1), sulfate (at the initial concentration ≥5 mM or 160 mg S L-1), and phosphate (at 

the initial concentration ≥15 mM or 465 mg P L-1) retarded acetic acid adsorption at an initial 

acetic acid level of 50 mM as illustrated in Figure 5(b). Inorganic anions are regarded to be 

adsorbed onto an ammonium group at pH 3.5 to 4 as illustrated in Eq. (8). 

{-NH3
+} + A- →  {-NH3

+A-}       (8) 

We used a competitive Langmuir adsorption isotherm as Eq. (9) to express the 

suppression by co-existing anions when b2CEq was negligible19 

      (9) 

 

where CEQ,i (mol L-1) is the equilibrium concentration of a competitor, bi is the apparent 

equilibrium constant of a competitor, and γi is the activity coefficient of the competitor 

calculated using the extended DeBye-Hückel law. Apparent equilibrium constants of 

chloride, sulfate, and phosphate were 69.7, 159.8, 65.0 L mol-1, respectively (Figure S6). We 

recommend considering the suppression effect when designing an adsorption process using 

MSN for fermentation liquor at high salt levels. It should be noted that the competitive 

isotherms were based on the equilibrium activity, which is quite lower than the initial anion 

concentration. 

QEQ =
QMaxb1CEQ

1+ b1CEQ + biγiCEQ, i
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In order to describe the adsorption efficiency of our MSN materials, we adopted the 

pseudo-second-order absorption kinetic model (Eq. 10), which has been widely used for 

many chemisorption reactions.21 
2

2 EQ
t

2 EQ

k Q t
Q =

1+k Q t
       (10) 

where Qt (mol kg-1) is the solid-phase loading of organic acids at time t, k (kg mol-1 min-1) is 

the pseudo-second-order rate constant and t is time (min). Figure 9-6 shows the acetic acid 

adsorption kinetics on MSN with 3.14 mol N kg-1, the weak base anion exchange resin, and 

the powdered activated carbon at initial acetic acid concentration of 0.05 M. The results were 

well-fitted to the pseudo-second-order model (R2 > 0.89). For MSN with 3.14 mol N kg-1, the 

adsorption reached a steady state within 10 min. The pseudo-second-order rate constant of 

MSN was 0.41 kg mol-1 min-1, which was higher than that of the anion exchange resin (0.14 

kg mol-1 min-1) or the activated carbon (0.06 kg mol-1 min-1). These results indicate that the 

uniformed mesoporous structure of MSN indeed would result in a faster adsorption. 

Conclusions 

A series of MCM-41 type, aminopropyl-functionalized mesoporous silica (MSN) 

materials was synthesized by a co-condensation method for the sequestration of carboxylic 

acids in biomass fermentation. The highest acid adsorption capacity was 3.38 mol/kg for 1:1 

complexation plus overloading phenomenon at an amine loading of 3.14 mol N kg-1. 

Desorption/regeneration by increasing pH to 10.5 was accomplished within 1 min, and the 

regenerated MSN showed adsorption capacity compatible to that of the original material. 

MSN also exhibited a very high selectivity to carboxylic acid over ethanol, glucose, and 

protein. And the highly ordered mesoporous structure of MSN enabled a faster reaction rate 

than those of anion exchange resin and activated carbon. We envision that the aminopropyl-

functionalized mesoporous silica would be an efficient adsorbent for the selective 

sequestration of carboxylic acids from biomass fermentation for many energy and chemical 

applications. 
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Figure 9-1. (a) BET isotherm and (b) BJH pore distribution of aminopropyl-functionalized 

MSN and pure MSN. 
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Figure 9-2. TEM image of a typical aminopropyl-functionalized MSN with 3.14 mmol N/g. 
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Figure 9-3. Adsorption isotherms of acetic, propionic, n-butyric, and lactic acids onto the 

3.14 mol N/kg MSN at 35°C. The symbol and line are experimental data and the extended 

Langmuir model, respectively.  
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Figure 9-4. Isosteric heat of acetic acid adsorption onto the 3.14 mol/kg MSN. 
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Figure 9-5. Acetic acid adsorption to regenerated the 3.14 mol N/kg MSN and desorbed 

acetic acid concentration by pH change. 
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Figure 9-6. Effect of coexisting chemicals on acetic acid adsorption onto the 3.14 mol N/kg 

MSN at initial acetic acid concentration of 50 mM. (a) ethanol, glucose, and glutamate; (b) 

chloride, sulfate, and phosphate. 
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Figure 9-7. Kinetics of acetic acid adsorption at 35°C and initial acetic acid of 50 mM with 

the 3.14 mol N/kg MSN, a weak base anion exchange resin (WBA), and a powered activated 

carbon (PAC). The symbol and line are experimental data and the pseudo-second-order 

kinetic model, respectively. 
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Table 9-1. Structural properties and extended Langmuir isotherm parameters for acetic acid 

adsorption at 35°C of aminopropyl-functionalized MSN and pure MSN 

a Assuming that silica atoms in aminopropyl-functionalized MSN had same adsorption capacity of pure MSN. 

 

Supporting Information 

 

Synthesis of amine-functionalized mesoporous silica nanoparticle (MSN) 

MSN was synthesized via a sodium hydroxide-catalyzed co-condensation reaction of 

tetraethoxysilane (TEOS) with 3-aminopropyltrimethoxysilane (APTMS) in the presence of 

cetyltrimethylammonium bromide (CTAB) as the structure-directing template. The mixture 

of CTAB (2.0 g, 5.5 mmol), 2.0 M of NaOH (aq) (7.0 mL, 14.0 mmol), and H2O (480.0 g, 

26.7 mol) was heated at 80 °C for 30 min. Then, TEOS (9.3 g, 44.8 mmol) and 

Structural properties Extended Langmuir isotherm parameters 

QMax, Maximum adsorption 

capacity for 1 to 1 complexation 

Apparent 

equilibrium 

constant (L/mol) 

Amine 

density 

(mol 

N/kg) 

SBET 

(m2/g) 

DBJH 

(nm) 

Vpore 

(cm3/g) 

mol/kg mol/mol N a mol/mm2 b1, 1 to 1 b2, 2 to 1 

R2 

0 1043 2.5 0.91 0.24 - 0.23 27.8  27.0  0.979 

0.84 755 2.7 0.52 0.91 0.80 1.20 58.8  59.9  0.983 

1.38 531 2.8 0.36 1.21 0.70 2.27 66.0  234.8  0.989 

3.14 502 2.6 0.33 3.38 1.00 6.73 42.1  22.3  0.990 

3.49 337 2.6 0.24 3.31 0.88 9.83 39.5  16.3  0.988 

3.65 330 2.2 0.18 3.26 0.83 9.87 43.2  24.2  0.933 
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organoalkoxysilane (APTMS (0 to 40.0 mmol)) were injected sequentially. The solution was 

stirred at 550 rpm and 80 °C for 2 h yielding the crude MSN products, which were isolated 

via a hot filtration. The resulting solids were washed with water and methanol extensively 

and dried under vacuum. The purified materials were added to a 1% (v/v) HCl-methanol 

solution at 60 °C for 6 h to remove the CTAB surfactant molecules. The surfactant-removed 

solid products were filtered and washed with copious water and methanol, and then dried 

under vacuum. Five types of MSN materials with different amine densities (0.84, 2.35, 3.14, 

3.49, and 3.65 mol N kg-1) were synthesized. A pure inorganic MSN without any organic 

functional group was also prepared as a reference sample for the carboxylic acid adsorption 

studies. 

 

Carboxylic acid adsorption study 

The highest capacity MSN was determined using adsorption isotherms of the six 

MSN materials at 35 °C and a final pH between 3.5 and 4.0. Acetic acid was chosen as the 

first targeted organic acid. We poured stock solutions of acetic acid (500.0 mM) into capped 

glass bottles at 35 °C. Predetermined volumes of the stock solution for the target initial acetic 

acid concentration (3.3 to 500.0 mM) were transferred to 25-mL Erlenmeyer flasks in a 

gyratory water bath at 35 °C (Model G76, New Brunswick Scientific, Inc., NJ). Flasks were 

filled to 10.0 mL with nanopure water and pH-adjusted with 2 N HCl or 2 N NaOH. Then 

50.0 mg of MSN was added, and the flasks sealed using parafilm (Pechiney, WI). After 

shaking at 190 rpm for 2 h, the solution was filtered through a 0.2-μm filter and the filtrate 

was evaluated for pH and soluble chemical. The same procedures were used in isotherm 

studies for other organic acids (propionic, n-butyric, and lactic acids) and temperature ranges 

(20 and 55 °C) using MSN with 3.14 mol N kg-1. 

The pH dependence (2.3 to 9.4, final value) of carboxylic acid adsorption was 

investigated at the initial acetic acid concentration of 50.0 mM. The pH dependence of 

carboxylic acid desorption and media regeneration was also studied in 15-mL centrifuge 

tubes at an initial acetic acid of 50.0 mM. After 2 h of shaking at pH 4.0, the sample was 

removed from two tubes, and the pH of the other tubes was increased to 10.5 using 2 N 

NaOH.  The tubes were then shaken again for 1 min.  The sample was removed from another 
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two tubes, and the remaining tubes were centrifuged at 2,000 rpm for 5 min to separate the 

supernatant and the regenerated MSN. The addition of acetic acid, pH adjustment to 4.0, 

adsorption, desorption by pH adjustment to 10.5, and centrifugation were repeated three 

times.  

The effects of individual coexisting chemicals in fermentation liquor were 

investigated at initial acetic acid levels of 10.0 to 50.0 mM. Chloride, sulfate and phosphate 

were selected as representative anions.  NaCl, Na2SO4, or NaH2PO4·H2O was added into 

acetic acid solution to provide the corresponding Cl- of 1.0 to 20.0 mM (35.5 to 710.0 mg L-

1), SO4
2- of 0.5 to 20.0 mM (16.0 to 640.0 mg L-1), or PO4

2- of 0.5 to 20.0 mM (15.5 to 620.0 

mg L-1). Suppression by organic chemical was studied using 26.7 to 133.3 mM (1.23 to 6.14 

g L-1) ethanol, 26.7 to 133.3 mM (4.8 to 24.0 g L-1) glucose, and 5.4 to 54.4 mM (0.8 to 8 g 

L-1) glutamate, representing alcohols, carbohydrates, and amino acids, respectively, in the 

fermentation effluent of waste biomass. 

Adsorption kinetics data were obtained at an initial acetic acid level of 50.0 mM, 

where 3.14 mol N/kg MSN, powdered activated carbon (PAC) (Aqua Nuchar®, 

MeadWestvaco Co., VA), and a weak base anion exchange resin (Dowex® Marathon® WBA, 

Sigma-Aldrich, MO) were used as adsorbents. Samples were taken at 0.5 to 120 min 

intervals over the period of 4 h. 

 

Structural analysis of MSN materials 

The surface area and pore diameter were quantified using N2 adsorption/desorption 

measurements with a Micromeritics ASAP 2000 system. The data were evaluated using the 

Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods to calculate the 

surface area and pore volume/pore size distribution, respectively. Samples were prepared by 

degassing at 90 °C for 1 h and then at 150 °C for 4 h. Powder X-ray diffraction (XRD) 

experiments were performed on a Scintag XDS2000 diffractometer using a Cu Kα radiation 

source. Low angle diffraction with a 2θ range of 1 to 10° was used to investigate the long-

range order of the mesoporous structures of MSN materials. Particle morphology and 

mesoporous structure of these materials were also examined by using a Tecnai G2-F20 

transmission electron microscope (TEM) with a 200 kV acceleration voltage. Carboxylic acid 
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concentration was measured by a high-performance liquid chromatograph HPLC (GP40, 

Dionex, CA) with an absorbance detector (AD20, Dionex) and a 300 mm × 7.8 mm Metacarb 

67H column (Varian, CA) using 0.05 M H2SO4 as mobile phase. Anions were measured by 

the same chromatograph with a conductivity detector (CD20, Dionex) and a 250 mm × 4.6 

mm AN1 column (Varian, CA) using carbonate buffer (1.7 mM NaHCO3 + 1.8 mM Na2CO3) 

as mobile phase. pH values of samples were measured by a dual channel pH/ion meter 

(AR25, Fisher Scientific). 

 

Table S9-1. Langmuir isotherm parameters for acetic acid adsorption at 35°C of amine-

functionalized MSN and pure MSN 

QMax
a N density 

(mol N/kg) 
(mol/kg) (mol/mol N)b 

b (L/mol)a R2 

0 0.33   - 15.8  0.972  

0.84 1.18  1.01  33.2  0.958  

1.38 2.06  1.25  24.0  0.974  

3.14 3.98  1.16  30.1  0.984  

3.49 3.81  1.00  30.5  0.973  

3.65 3.85  0.97  30.7  0.921  

 

a
Max EQ

EQ
EQ

Q bC
Q =

1+bC  

where QEQ (mol L-1) is the equilibrium amount of carboxylic acid adsorbed in the adsorbate, QMax (mol kg-1) 

is the maximum adsorption capacity, CEQ (mol L-1) is the equilibrium concentration of unionized carboxylic 

acid, and b is the apparent equilibrium constant (L mol-1). 

b Assuming that silica atoms in amine-functionalized MSN had same adsorption capacity of pure MSN. 
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Figure S9-1. X-ray diffraction patterns of MSN before and after 

functionalization with aminopropyl group. 

Figure S9-2. Acetic acid adsorption isotherms of MSN at 35°C. The symbol and 

line are experimental data and the extended Langmuir model, respectively. 
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Figure S9-3. Comparison of Langmuir models with or without regarding 2 to 1 complexation 

for acetic acid adsorption onto the 3.14 mol N/kg MSN at 35°C. 

 

 

 

 

 

 

 

Figure S9-4. Effect of pH on acetic acid adsorption at initial acetic acid concentration of 50 

mM. 
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Figure S9-5. Effect of temperature on acetic acid adsorption onto the 3.14 mol N/kg MSN. 
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Figure S9-6. Contour lines of constant acetic acid adsorption onto the 3.14 mol N/kg MSN 

vs. equilibrium concentration of acetic acid and equilibrium activity of chloride, sulfate, and 

phosphate. 
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CHAPTER 10.  GENERAL CONCLUSIONS 

 

Mesoporous silica nanoparticles (MSN) with high surface area, tunable pore size and 

very narrow pore size distribution were functionalized by organic acid, organic base, metallic 

nanoparticles and organometallic complexes through co-condensation methods and/or post-

synthesis grafting methods. And these surface-functionalized mesoporous materials were 

used as heterogeneous catalysts in organocatalysis, metallic catalysis, organometallic 

catalysis and used for selective sequestration of carboxylic acids as well. 

Organocatalysis. First, sulfonic acid functionalized MSN (SAMSN) and 

aminopropyl functionalized MSN (APMSN) were synthesized by co-condensation methods 

where both the Brönsted acid and base were confined into the mesoporous channels of MSN 

materials. It was proved that they could co-exist as compatible catalysts for one-pot reaction 

cascades without neutralization each other because they were physically particle-separated in 

different MSN particles’ channels (Figure 10-1).  

Figure 10-1. One-pot reaction cascades catalyzed by SAMSN and APMSN.
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I also succeeded in site-separating Brönsted acid and base by MSN’s internal surface 

and external surface through co-condensation method to functionalize MSN’s internal 

surface followed by grafting method to functionalize MSN’s external surface  and using 

these internal and external surface separated Brönsted acid and base as compatible catalysts 

in one-pot reaction cascades too (Figure 10-2). In the kinetic studies, it was found that the 

activity of catalyst on the surface mesoporous silica nanoparticle was proportional to the 

coverage of catalyst on MSN surface. 

Following these two successful approaches, we would further develop them into a 

general design principle for mimicking biological systems, in which a series of reactions are 

catalyzed by different enzymes in a precise sequence. 

 

 

Figure 10-2. One-pot reaction cascades catalyzed by SAMSN-AP and APMSN-SA.
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Metallic catalysis. Water-soluble rhodium nanoparticles with well defined particle 

size were synthesized and immobilized on MSN during in situ MSN’s synthesis. The 

obtained material (MSNRhNPs) had homogeneous rhodium nanoparticle size, homogeneous 

rhodium nanoparticle distribution in MSN, with typical MSN’s highly ordered structure and 

Figure 10-3. CO hydrogenation catalyzed by MSNRhNPs-Mn and MSNRhNPsMn. 

Figure 10-4. Enantioselective hydrogenation catalyzed by MSNRhNPsCD. 
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surface area and narrow pore size distribution as well. For the first time, I succeeded in 

distributing rhodium nanoparticles in MSN and modifying rhodium nanoparticles by 

manganese oxide during the formation of MSN. After MSNRhNPs were modified by 

manganese oxide efficiently (MSNRhNPsMn), MSNRhNPsMn could catalyze the 

hydrogenation of CO to produce the renewable energy alternative - ethanol with high 

selectivity and the by-product methanol could be suppressed dramatically (Figure 10-3).   

Additionally, after MSNRhNPs were functionalized by some chiral agents such as (-)-

cinchonidine, it can used as a solid chiral catalyst which can recycled and reused without any 

loss of reactivity and enantioselectivity (Figure 10-4). Here I opened a new strategy in 

heterogeneous catalysis to stabilize and homogeneously distribute metal nanoparticle 

catalysts in mesoporous silica nanoparticle during MSN formation. 

Organometallic catalysis. Wilkinson-type rhodium phosphine complex was 

homogeneously immobilized on MSN surface by co-condensation method followed by 

coordination reaction. This MSN immobilized rhodium phosphine complex (RhPMSN) had a 

new and total different catalytic performance when (-)-cinchonidine was adsorbed on MSN 

surface. RhPMSN could enantioselectively catalyze the hydrogenation of pyruvate with 

surface-adsorbed (-)-cinchonidine with around 50% e.e. although its counterpart, 

RhCl(TPP)3, in homogeneous system could not be chirally induced by (-)-cinchonidine 

(Figure 10-5).  Here I hope a new door or field of asymmetric catalysis catalyzed by achiral 

catalysts was opened. 
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During the in-depth solid-state NMR study of RhPMSN, functionalization of MSN by 

2-(diphenylphosphino)ethyl groups was confirmed by the presence of T sites in the 29Si 

CPMASNMR spectrum and quantification of these sites was achieved via integration of the 
29Si DPMAS NMR spectrum, in which the percent of T sites was found to be 3.7%. Both 1D 

and 2D SSNMR experiments showed that covalent attachment of the rhodium– phosphine 

ligand to the MSN surfaces was successful, as well as provided structural assignments of the 

ligand and the MSNs themselves. Both 13C–1H and 31P–1H idHETCOR experiments provided 

structural details of oxidized and non-oxidized phosphine ligands, otherwise indiscernible in 

a conventional 1D CPMAS NMR experiments. It was also found that oxidation of the 

attached 2-(diphenylphosphino)ethyl groups and detachment of Rh was enhanced at higher 

temperature even under CO and H2. 

Furthermore, I also synthesized organometallic complex (salen)Cr on MSN and 

applied it in the oxidation of tetramethylbenzidine (TMB) with iodosobenzene. And the 

reaction using MSN(salen)CrIII as a heterogeneous catalyst exhibited both similarities and 

Figure 10-5. Asymmetric hydrogenation of ethyl pyruvate catalyzed by homogeneous 

RhCl(TPP)3/(-)-cinchonidine and heterogeneous RhPMSN/(-)-cinchonidine. 
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differences with the analogous homogeneous reaction using (salen)CrIII(H2O)+ as catalyst in 

aqueous acetonitrile (10% H2O).  

Selective sequestration of carboxylic acids. Aminopropyl-functionalized MSN 

could serve as an efficient adsorbent for selective sequestration of carboxylic acids. 

Aminopropyl-functionalized MSN with a designed loading of functional groups had a very 

high selectivity for carboxylic acid instead for ethanol, glucose, and protein. The 

regeneration of aminopropyl-functionalized MSN could be done easily by increasing pH to 

10.5 because the adsorption reaction between carboxylic acids and MSN was pH-dependent. 

And the regenerated MSN showed adsorption capacity equivalent to the original (Figure 10-

6). I believe this study provides a new approach that can serve a general principle for 

designing new nanoparticle-based adsorbent for selective sequestration of valuable chemicals 

from biomass fermentation with high efficiency. 

  

 

 

 

Figure 10-6. Selective sequestration of carboxylic acids by aminopropyl-

functionalized MSN. 
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